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Preface

It has almost been ten years since this book was first published. As we are
all aware, much has been changed in the financial landscape during the past
decade, and especially during the past two years after the financial tsunami
of 2008. It is indeed a good time to rethink and reflect not only on one’s life,
but also on the subject of time series and finance.

The second edition is a result of some of these reflections. The main goals
of preparing this second edition are to update many of the concepts and new
developments in time series and finance and to correct some of the misprints
that appeared in the previous edition. The underlying philosophy, however,
remains the same, that is, to provide a text that is succinct and practical for
both academicians and practitioners.

The book has been extended from thirteen chapters to fifteen chapters.
The two new chapters are Chapter 14, Markov Chain Monte Carlo Methods
for Bayesian time series and Chapter 15, Statistical Arbitrage. Both are
of topics of intense interest among academicians and financial practitioners.
Their inclusion would make the book more up-to-date and hopefully entertain
a broader spectrum of readers. Upon many requests from users of the first
edition, a new chapter on solutions to selected exercises has also been prepared
so as to make the book more accessible to instructors and students alike. A
summary of the second edition is:

e To update and correct the misprints and data sets used throughout the
book.

Xix



XX PREFACE

o To provide not only the SPLUS commands, but also to supplement with
the R commands. As SPLUS and R are very similar, only essential
features are pointed out in this edition. There is no point in repeating
the same analysis with both SPLUS and R if the two sets of commands
are virtually identical. I trust the readers can distinguish their obvious
differences. But to the extent that is possible, I tried to highlight the
subtle differences throughout the text when the situation arises.

e To include the idea of Bayesian time series analysis by adding a new
chapter on Markov Chain Monte Carlo (Chapter 14). As the Bayesian
methodology constitutes an important topic in modern finance, such
an inclusion would offer a broader perspective and appeal to a broader
audience.

e A new chapter on Statistical Arbitrage (Chapter 15) has also been
added. Since the ideas of pairs trading comes in naturally through
co-integration, I hope that this new chapter would make the book more
appealing to practitioners.

e A set of solutions to selected exercises has also been added to this new
edition. By doing so, I hope both students and instructors alike would
find the book more accessible.

This revision benefits greatly from discussions and comments from col-
leagues, friends and various readers of the first edition. I am grateful to all
of their constructive inputs. In particular, I would like to thank Manfred
Deistler, for insightful comments regarding the first edition. In addition, I
would like to thank both John Lehoczky and Mark Schervish of Carnegie
Mellon University, for allowing me to borrow ideas from their lecture notes
on statistical arbitrage, a substantial portion of which is reflected in Chapter
15. Editorial assistance from C.Y. Yau of Columbia University, Wei-wei Liu,
Ming-Hin Li and Michael Leung of CUHK, are gratefully acknowledged. Their
patience and expertise in WTEX make my life much easier. I would also like
to thank Steve Quigley. Jacqueline Palmieri and Melissa Yanuzzi, all at John
Wiley & Sons, for their professional help in preparing this edition. Finally, I
want to thank my wife and my family for their encouragement and support.
Part of the research related to this edition is supported by the General Re-
search Grants from the Research Grants Council of HKSAR. The web site of
this edition is

http://www.sta.cuhk.edu.hk/datal/staff/nhchan/tsbook2nd.html.

Ngai Hang Chan
Shatin, Hong Kong
October 2010


http://www.sta.cuhk.edu.hk/datal/staff/nhchan/tsbook2nd.html

Preface to the First Edition

This textbook evolved in conjunction with teaching a course in time series
analysis at Carnegie Mellon University and the Chinese University of Hong
Kong. For the past several years, I have been involved in developing and
teaching the financial time series analysis course for the Masters of Science in
Computational Finance Program at Carnegie Mellon University. There are
two unique features of this program that differ from those of a traditional
statistics curriculum.

First, students in the program have diversified backgrounds. Many of them
have worked in the finance world in the past, and some have had extensive
trading experiences. On the other hand, a substantial number of these stu-
dents have already completed their Ah.D. degrees in theoretical disciplines
such as pure mathematics or theoretical physics. The common denominator
between these two groups of students is that they all want to analyze data
the way a statistician does.

Second, the course is designed to be fast paced and concise. Only six weeks
of three-hour lectures are devoted to covering the first nine chapters of the
text. After completing the course, students are expected to have acquired a
working knowledge of modern time series techniques.

Given these features, offering a full-blown theoretical treatment would be
neither appropriate nor feasible. On the other hand, offering cookbook-style
instruction would never fulfill the intellectual curiosity of these students. They
want to attain an intellectual level beyond that required for routine analysis
of time series data. Ultimately, these students have to acquire the knack of



xxii PREFACE TO THE FIRST EDITION

knowing the conceptual underpinnings of time series modeling in order to get
a better understanding of the ever-changing dynamics of the financial world.
Consequently, finding an appropriate text which meets these requirements
becomes a very challenging task.

As a result, a set of lecture notes that balances theory and applications,
particularly within the financial domain, has been developed. The current text
is the consequence of several iterations of these lecture notes. In developing
the book a number of features have been emphasized.

e The first seven chapters cover the standard topics in statistical time
series, but at a much higher and more succinct level. Technical details
are left to the references, but important ideas are explained in a con-
ceptual manner. By introducing time series in this way, both students
with a strong theoretical background and those with strong practical
motivations get excited about the subject early on.

e Many recent developments in nonstandard time series techniques, such
as univariate and multivariate GARCH, state space modeling, cointegra-
tions, and common trends, are discussed and illustrated with real finance
examples in the last six chapters. Although many of these recent de-
velopments have found applications in financial econometrics, they are
less well understood among practitioners of finance. It is hoped that
the gap between academic development and practical demands can be
narrowed through a study of these chapters.

e Throughout the book I have tried to incorporate examples from finance
as much as possible. This is done starting in Chapter 1, where an equity-
style timing model is used to illustrate the price one may have to pay
if the time correlation component is overlooked. The same approach
extends to later chapters, where a Kalman filter technique is used to
estimate parameters of a fixed-income term-structure model. By giving
these examples, the relevance of time series in financial applications can
be firmly anchored.

e To the extent possible, almost all of the examples are illustrated through
SPLUS programs, with detailed analyses and explanations of the SPLUS
commands. Readers will be able to reproduce the analyses by replicating
some of the empirical works and testing alternative models so as to
facilitate an understanding of the subject. All data and computer codes
used in the book are maintained in the Statlib Web site at Carnegie
Mellon University and the Web page at the Chinese University of Hong
Kong at

http://www.sta.cuhk.edu.hk/datal/staff/nhchan/tsbook.html.

Several versions of these lecture notes have been used in a time series
course given at Carnegie Mellon University and the Chinese University of


http://www.sta.cuhk.edu.hk/datal/staff/nhchan/tsbook.html
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Hong Kong. I am grateful for many suggestions, comments, and questions
from both students and colleagues at these two institutions. In particular,
I am indebted to John Lehoczky, for asking me to develop the program, to
Jay Kadane, for suggesting that I write this book, and to Pantelis Vlachos,
who taught part of this course with me during the spring of 2000. Many of
the computer programs and examples in Chapters 9 to 13 are contributions
by Pantelis. During the writing I have also benefited greatly from consulting
activities with Twin Capital Management, in particular Geoffrey Gerber and
Pasquale Rocco, for many illuminating ideas from the financial world. I hope
this book serves as a modest example of a fruitful interaction between the
academic and professional communities. I would also like to thank Ms. Heidi
Sestrich, for her help in producing the figures in Latex, and to Steve Quigley,
Heather Haselkorn, and Rosalyn Farkas, all from Wiley, for their patience
and professional assistance in guiding the preparation and production of this
book. Financial support from the Research Grant Council of Hong Kong and
the National Security Agency throughout this project is gratefully acknowl-
edged. Last, but not least, I would like to thank my wife, Pat Chao, whose
contributions to this book went far beyond the call of duty as a part-time
proofreader, and to my family, for their understanding and encouragement of
my ceaseless transitions between Hong Kong and Pittsburgh during the past
five years. Any remaining errors are, of course, my sole responsibility.

Ngai Hang Chan
Shatin, Hong Kong
March 2001
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Introduction

1.1 BASIC DESCRIPTION

The study of time series is concerned with time correlation structures. It has
diverse applications ranging from oceanography to finance. The celebrated
CAPM model and the stochastic volatility model are examples of financial
models that contain a time series component. When we think of a time series,
we usually think of a collection of values {X; : t = 1,...,n} in which the
subscript ¢ indicates the time at which the datum X is observed. Although
intuitively clear, a number of nonstandard features of X; can be elaborated.

UNEQUALLY SPACED DATA (MISSING VALUES). For example, if the series
is about daily returns of a security, values are not available during nontrading
days such as holidays.

CONTINUOUS-TIME SERIES. In many physical phenomena, the underlying
quantity of interest is governed by a continuously evolving mechanism and the
data observed should be modeled by a continuous time series X (¢). In finance,
we can think of tick-by-tick data as a close approximation to the continuous
evolution of the market.

AGGREGATION. The series observed may represent an accumulation of un-
derlying quantities over a period of time. For example, daily returns can be
thought of as the aggregation of tick-by-tick returns within the same day.

REPLICATED SERIES. The data may represent repeated measurements of
the same quantity across different subjects. For example, we might monitor
the total weekly spending of each of a number of customers of a supermarket
chain over time.



2 INTRODUCTION

MULTIPLE TIME SERIES. Instead of being a one-dimensional scalar, X; can
be a vector with each component representing an individual time series. For
example, the returns of a portfolio that consist of p equities can be expressed
as Xy = (X1t,...,Xpt)', where each Xy, ¢ = 1,..., p, represents the returns of
each equity in the portfolio. In this case, we will be interested not only in the
serial correlation structures within each equity, but also the cross-correlation
structures among different equities.

NONLINEARITY, NONSTATIONARITY, AND HETEROGENEITY. Many of the
time series encountered in practice may behave nonlinearly. Sometimes trans-
formation may help, but we often have to build elaborate models to account
for such nonstandard features. For example, the asymmetric behavior of stock
returns motivates the study of GARCH models.

Although these features are important, in this book we deal primarily with
standard scalar time series. Only after a thorough understanding of the tech-
niques and difficulties involved in analyzing a regularly spaced scalar time
series will we be able to tackle some of the nonstandard features.

In classical statistics, we usually assume the X’s to be independent. In
a time series context, the X’s are usually serially correlated, and one of the
objectives in time series analysis is to make use of this serial correlation struc-
ture to help us build better models. The following example illustrates this
point in a confidence interval context.

Example 1.1 Let X, be generated by the following model:

Xt =l +a; — 00,3_1, ag ~ N(O, 1) iid.

Clearly, E(X;) = p and varX; = 1+ 62, Thus,

cov(Xy, Xe-k) = E(Xp—p)(Xek —p)
= E(a; —0a;_1)(a:—x ~ 0as_k-1)
—6, |k =1,
1462, k=0,
0, otherwise.

Let X = (31, X¢)/n. By means of the formula

cov(Xs, X;),

ar(%XQXJz%Zvar( %Z
t= t=1 t=1

IIMI



BASIC DESCRIPTION 3

Table 1.1 Lengths of Confidence Intervals for n = 50

0 L(#)

-1 L(-1)=(4-F)V2x2

-0.5 1.34
0 1

0.5 0.45
1 0.14

it is easily seen that
02Y = var X

1 2
= ;En(l +02) - ;L-z—(n - 1)9

-1 (1+62—29+%>
n

[(1 -6+ %] .

It

3= 31

n

Therefore, X ~ N(pu, 02?). Hence, an approzimate 95% confidence interval
(CI) for p is

(1—9)2+7

1/2
Nl )"
NZ)

If 8 =0, this CI becomes .

X+——=

ﬁ’

coinciding with the independent identically distributed (i.i.d.) case. The dif-
ference in the Cls between 8 = 0 and 8 # 0 can be expressed as

L) = [(1 —-6)% + %9] 1/2.

Table 1.1 gives numerical values of the differences for n = 50. For example,
if 8 = 1 and if we were to use a CI of zero for 8, the wrongly constructed CI
would be much longer than it is supposed to be. The time correlation structure
given by the model helps to produce better inference in this situation. O

Example 1.2 As a second example, we consider the equity-style timing model
discussed in Koo and Shumcker (1999). In this article the authors try to
explain the spread between value and growth stocks using several fundamental
quantities. Among them, the most interesting variable is the earnings—yield
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4 INTRODUCTION
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Earnings-Yield Gap

Fig. 1.1 Equity-style timing.

gap reported in Figure 4 of their paper. This variable ezplains almost 30%
of the variation of the spread between value and growth and suggests that the
earnings—yield gap might be a highly informative regressor. Further descrip-
tion of this data set is given in their article. We repeat this particular analysis,

but taking into account the time order of the observations. The data between
January 79 to June 97 are stored in the file eygap.dat on the Web page for

this book, which can be found at

http://www.sta.cuhk.edu.hk/datal/staff/nhchan/tsbook.html

For the time being, we restrict our attention to reproducing Figure 4 of Kao
and Shumaker (1999). The plot and SpLUS /R commands are as follows:

>eyield<-read.table("eygap.dat", header=T)
>plot(eyield[,2],eyield[,3],xlab="Earnings-Yield Gap",
+ ylab="Return Differential")

>title("Scatterplot of Style Spreads (Subsequent

+ 12-month Value Return - Growth Return)

+ against Earnings-Yield Gap, Jan 79- Jun 97",cex=0.6)
>identify(eyield[,2],eyield[,3],eyield[,1],cex=0.5)

As illustrated in Figure 1.1, the scattergram can be separated into two
clouds, those belonging to the first two years of data and those belonging to
subsequent years. When time is taken into account, it seems that finding
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an R? = 0.3 depends crucially on the data cloud between 79 and 80 at the
lower right-hand corner of Figure 1.1. Accordingly, the finding of such a high
explanatory power from the earnings—yield gap seems to be spurious. This
example demonstrates that important information may be missing when the
time dimension is not taken properly into account. g

1.2 SIMPLE DESCRIPTIVE TECHNIQUES

In general, a time series can be decomposed into a macroscopic component
and a microscopic component. The macroscopic component can usually be
described through a trend or seasonality, whereas the microscopic component
may require more sophisticated methods to describe it. In this section we deal
with the macroscopic component through some simple descriptive techniques
and defer the study of the microscopic component to later chapters. Consider
in general that the time series {X:} is decomposed into a time trend part T3,
a seasonal part S, and a microscopic part given by the noise N;. Formally,

Xe = T+ 8+ N,
pt + N (1.1)

14

1.2.1 Trends

Suppose that the seasonal part is absent and we have only a simple time trend
structure, so that T3 can be expressed as a parametric function of ¢, Ty = a+t,
for example. Then T; can be identified through several simple devices.

LEAST SQUARES METHOD. We can use the least squares (LS) procedure
to estimate T} easily [i.e., find a and 3 such that ) (X; — T3)? is minimized].
Although this method is convenient, there are several drawbacks.

1. We need to assume a fixed trend for the entire span of the data set,
which may not be true in general. In reality, the form of the trend may
also be changing over time and we may need an adaptive method to
accommodate this change. An immediate example is the daily price of
a given stock. For a fixed time span, the prices can be modeled pretty
satisfactorily through a linear trend. But everyone knows that the fixed
trend will give disastrous predictions in the long run.

2. For the LS method to be effective, we can only deal with a simple
restricted form of T;.

FILTERING. In addition to using the LS method, we can filter or smooth
the series to estimate the trend, that is, use a smoother or a moving average

filter, such as
-]

Y, =Sm(Xy) = Y arXpyr.

r=—q
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We can represent the relationship between the output Y; and the input X; as

X; — - Sm(X;) = Y.

The weights {a.} of the filters are usually assumed to be symmetric and
normalized (i.e., a» = a—, and Y a, = 1). An obvious example is the simple
moving average filter given by

The length of this filter is determined by the number g. When g = 1 we have
a simple three-point moving average. The weights do not have to be the same
at each point, however. An early example of unequal weights is given by the
Spencer 15-point filter, introduced by an English actuary, Spencer, in 1904.

The idea is to use the 15-point filter to approximate the filter that passes
through a cubic trend. Specifically, define the weights {a,} as

ar = Q-r,
a, = 0, |7 |>17,
(a0, @1,...,a7) = 355(74, 67, 46, 21, 3, —5, —6, —3).

It can easily be shown that the Spencer 15-point filter does not distort a cubic
trend; that is, for T, = at® + bt + ct + d,

7 7
Sm(X;) = Z arTiyr + Z arNejr
r=—7 r==T7
7
& Z ath+'r
r=-7
= T

In general, it can be shown that a linear filler with weights {a.} passes a
polynomial of degree k in ¢, Zf:o c;t*, without distortion if and only if the
weights {a,} satisfy two conditions, as described next.

Proposition 1.1 T; = ¥, a,;Ti4r, for all kth-degree polynomials Ty = co +
cit + - + cxt® if and only if

zs:ar = 1,

TrT=—38

d .

erar = 0, for j=1,...,k
r=-—3

The reader is asked to provide a proof of this result in the exercises. Using this
result, it is straightforward to verify that the Spencer 15-point filter passes a
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cubic polynomial without distortion. For the time being, let us illustrate the
main idea on how a filter works by means of the simple case of a linear trend
where X; = T; + N;, T; = a + ft. Consider applying a (2¢ + 1)-point moving
average filter (smoother) to X; :

1 q
Y, = Sm(Xy)= m Z Xttr

r=-—gq

= 3 et B+ )]+ N

r=—

if 2—;ﬁ Zzz_ q Niyr 2 0. In other words, if we use Y; to estimate the trend,

it does a pretty good job. We use the notation ¥; = Sm(X,) = T, and
Res(X;) = X, Ty =X, — Sm(X;) & N,. In this case we have what is known
as a low-pass filter [i.e., a filter that passes through the low-frequency part
(the smooth part) and filters out the high-frequency part, N;]. In contrast,
we can construct a high-pass filter that filters out the trend. One drawback
of a low-pass filter is that we can only use the middle section of the data. If
end-points are needed, we have to modify the filter accordingly. For example,

consider the filter -

Sm(X:) =Y a(l —a) X,_;,
3=0
where 0 < o < 1. Known as the exponential smoothing technique, this plays
a crucial role in many empirical studies. Experience suggests that « is chosen
between 0.1 and 0.3. Finding the best filter for a specific trend was once an
important topic in time series. Tables of weights were constructed for different
kinds of lower-order trends. Further discussion of this point can be found in
Kendall and Ord (1990).
DIFFERENCING. The preceding methods aim at estimating the trend by
a smoother T;. In many practical applications, the trend may be known in
advance, so it is of less importance to estimate it. Instead, we might be
interested in removing its effect and concentrate on analyzing the microscopic
component. In this case it will be more desirable to eliminate or annihilate
the effect of a trend. We can do this by looking at the residuals Res(X,;) =
X: —Sm(X;). A more convenient method, however, will be to eliminate the
trend from the series directly. The simplest method is differencing. Let B be
the backshift operator such that BX; = X;_;. Define

AXt = (1 - B)Xt = Xt - Xt_l,
A]Xt = (I—B)]Xt,]—_—l,z,

If Xt = Tt + Nt, with Tt = Z;?:O (ljtj, then AJXt = ]'a] + AJNt and Tt is
eliminated. Therefore, differencing is a form of high-pass filter that filters out
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the low-frequency signal, the trend 7}, and passes through the high-frequency
part, N;. In principle, we can eliminate any polynomial trend by differencing
the series enough times. But this method suffers one drawback in practice.
Each time we difference the series, we lose one data point. Consequently, it
is not advisable to difference the data too often.

LOCAL CURVE FITTING. If the trend turns out to be more complicated,
local curve smoothing techniques beyond a simple moving average may be
required to obtain good estimates. Some commonly used methods are spline
curve fitting and nonparametric regression. Interested readers can find a lucid
discussion about spline smoothing in Diggle (1990).

1.2.2 Seasonal Cycles

When the seasonal component S; is present in equation (1.1), the methods of
Section 1.2.1 have to be modified to accommodate this seasonality. Broadly
speaking, the seasonal component can be either additive or multiplicative,
according to the following formulations:

X, — T: + S; + Ny, additive case,
Y7 TyS:N., multiplicative case.

Again, depending on the goal, we can either estimate the seasonal part by
some kind of seasonal smoother or eliminate it from the data by a seasonal
differencing operation. Assume that the seasonal part has a period of d (i.e.,

St+a = St Z?:l S; =0).

(A) Moving average method. We first estimate the trend part by a moving
average filter running over a complete cycle so that the effect of the
seasonality is averaged out. Depending on whether d is odd or even, we
perform one of the following two steps:

1LIfd=2g let Ty = 3 (3Xemg+ Xemgu1 ++ + Xepgo1 + 1 Xi1q)
fort=9¢+1,...,n—gq.
2. Ifd=29+1,let T, =437 Xy fort=g+1,...,n—gq.

After estimating T3, filter it out from the data and estimate the seasonal
part from the residual X, — T,. Several methods are available to attain
this last step, the most common being the moving average method.
Interested readers are referred to Brockwell and Davis (1991) for further
discussions and illustrations of this method. We illustrate this method
by means of an example in Section 1.4.

(B) Seasonal differencing. On the other hand, we can apply seasonal dif-
ferencing to eliminate the seasonal effect. Consider the dth differencing
of the data X; — X;_q. This differencing eliminates the effect of S; in
equation (1.1). Again, we have to be cautious about differencing the
data seasonably since we will lose data points.
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1.3 TRANSFORMATIONS

If the data exhibit an increase in variance over time, we may need to transform
the data before analyzing them. The Box—Cox transformations can be applied
here. Experience suggests, however, that log is the most commonly found
transformation. Other types of transformations are more problematic, which
can lead to serious difficulties in terms of interpretations and forecasting.

1.4 EXAMPLE

In this section we illustrate the idea of using descriptive techniques to analyze
a time series. Figure 1.2 shows a time series plot of the quarterly operating
revenues of Washington Water Power Company, 1980-1986, an electric and
natural gas utility serving eastern Washington and northern Idaho. We start
by plotting the data. Several conclusions can be drawn by inspecting the plot.

e As can be seen, there is a slight increasing trend. This appears to drop
around 1985-1986.

e There is an annual (12-month) cycle that is pretty clear. Revenues are
almost always lowest in the third quarter (July-September) and highest
in the first quarter (January—March). Perhaps in this part of the country
there is not much demand (and hence not much revenue) for electrical
power in the summer (for air conditioning, say), but winters are cold
and there is a lot of demand (and revenue) for natural gas and electric
heat at that time.
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Fig. 1.3 Annual box plots.

e Figure 1.3 shows box plots for each year’s operating revenues. The
medians seem to rise from year to year and then fall back after the third
year. The interquartile range (IQR) gets larger as the median grows and
gets smaller as the median falls back; the range does the same. Most of
the box plots are symmetric or very slightly positively skewed. There
are no outliers.

e In Figure 1.3 we can draw a smooth curve connecting the medians of
each year’s quarterly operating revenues. We have already described
the longer cycle about the medians; this pattern repeats once over the
seven-year period graphed. This longer-term cycle is quite difficult to
see in the original time series plot.

Assume that the data set has been stored in the file named washpower.dat.
The SPLUS program that generates this analysis is listed as follows. In the
case of R, replace the command “rts” in SPLUS by the command “ts”. The
rest of the commands in R are exactly the same. Readers are encouraged to
work through these commands to get acquainted with the SPLUS /R program.
Further explanations of these commands can be found in the books of Krause
and Olson (1997) and Venables and Ripley (1999).

>wash<-rts(scan(‘‘washpower.dat’’),start=1980,freq=4)
>wash.ma<-filter(wash,c(1/3,1/3,1/3))
>leg.names<-c(’Data’,’Smoothed Data’)
>ts.plot(wash,wash.ma,lty=c(1,2),

+ main=’Washington Water Power Co

Continue string: Operating Revenues: 1980-1986’,

+ ylab=’Thousands of Dollars’,xlab=’Year’)
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>legend(locator(1),leg.names,lty=c(1,2))
>wash.mat<-matrix(wash,nrow=4)
>boxplot(as.data.frame(wash.mat) ,names=as.character(seq(1980,

+

1986)), boxcol=-1,medcol=1,main=’Washington Water Power Co

Continue string: Operating Revenues: 1980-1986°,

+

ylab=’Thousands of Dollars’)

To assess the seasonality, we perform the following steps in the moving

average method.

VVVYV 4+ ++++V +++++V VYV

1. Estimate the trend through one complete cycle of the series with n =
28,d=4,and g =2 to form X; —T; : t =3,...,26. The T; is denoted
by washsea.ma in the program.

2. Compute the averages of the deviations { X} —Tt} over the entire span of
the data. Then estimate the seasonal part S;:i=1,...,4 by computing
the demeaned values of these averages. Finally, for i = 1,...,4 let
gi+4j =5 : j =1,...,6. The estimated seasonal component S; is
denoted by wash.sea in the program, and the deseasonalized part of
the data X; — S; is denoted by wash.nosea.

3. The third step involves reestimating the trend from the deseasonalized
data wash.nosea. This is accomplished by applying a filter or any
convenient method to reestimate the trend by 7}, which is denoted by
wash.ma?2 in the program.

4. Finally, check the residual X; — T, — .S't, which is denoted by wash.res in
the program, to detect further structures. The SPLUS /R code follows.

washsea.ma<-filter(wash,c(1/8,rep(1/4,3),1/8))
wash.sea<-¢(0,0,0,0)
for(i in 1:2){
for(j in 1:6) {
wash.sea[i]<-wash.sea[i]+
(wash([i+4*j] [[1]]-washsea.ma[i+4*j]1[[1]])
}
}
for(i in 3:4){
for (j in 1:6){
wash.sea[i]<-wash.sea[i]+
(wash[i+4*(j-1)] [[1]]-washsea.ma[i+4*(j-1)1[[11])
}
}
wash.sea<-(wash.sea-mean(wash.sea))/6
wash.seal<-rep(wash.sea,7)
wash.nosea<-wash-wash.sea
wash.ma2<-filter(wash.nosea,c(1/8,rep(1/4,3),1/8))
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Fig. 1.4 Moving average method of seasonal decomposition.

> wash.res<-wash-wash.ma2-wash.sea

> write(wash.seal, file=’out.dat’)

> wash.seatime<-rts(scan(’out.dat’),start=1980,freq=4)

% This step converts a non-time series object into a time
% series object.

> ts.plot(wash,wash.nosea,wash.seatime)

Figure 1.4 gives the time series plot, which contains the data, the desea-
sonalized data, and the seasonal part. If needed, we can also plot the residual
wash.res to detect further structures. But it is pretty clear that most of the
structures in this example have been identified.

Note that SPLUS /R also has its own seasonal decomposition function st1.
Details of this can be found with the help command. To execute it, use

> wash.stl<-stl(wash, ’periodic’)
> dwash<-diff (wash,4)
> ts.plot(wash,wash.stl$sea,wash.stl$rem,dwash)

Figure 1.5 gives the plot of the data, the deseasonal part, and the seasonal
part. Comparing Figures 1.4 and 1.5 indicates that these two methods ac-
complish the same task of seasonal adjustments. As a final illustration we can
difference the data with four lags to eliminate the seasonal effect. The plot of
this differenced series is also drawn in Figure 1.5.
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1.5 CONCLUSIONS

In this chapter we studied several descriptive methods to identify the macro-
scopic component (trend and seasonality) of a time series. Most of the time,
these components can be identified and interpreted easily and there is no
reason to fit unnecessarily complicated models to them. From now on we
will assume that this preliminary data analysis step has been completed and
we focus on analyzing the residual part N; for microscopic structures. To
accomplish this goal, we need to build more sophisticated models.

1.6 EXERCISES

1. (a) Show that a linear filter {a;} passes an arbitrary polynomial of

degree k without distortion, that is,
my = z a;my—g,
J
for all kth-degree polynomials m; = cg+cit+- - -+ cxt® if and only
if
Zaj =1, and Ejraj =0 forr=1,..,k.
J J

(b) Show that the Spencer 15-point moving average filter does not
distort a cubic trend.
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2. If my = £=0 cxt®,t = 0,41, ..., show that Am; is a polynomial of

degree (p — 1) in t and hence AP*lm,; = 0.

. In SpLUS, get hold of the yearly airline passenger data set by assigning

it to an object. You can use the command
x<-rts(scan(’airline.dat’),freq=12,start=1949)

The data are now stored in the object z, which forms the time series
{X:}. This data set consists of monthly totals (in thousands) of interna-
tional airline passengers from January 1949 to December 1960 [details
can be found in Brockwell and Davis (1991)]. It is stored under the
file airline.dat on the Web page for this book.

(a) Do a time series plot of this data set. Are there any obvious trends?

(b) Is it necessary to transform the data? If a transformation is needed,
what would you suggest?

(c) Do a yearly running median for this data set. Sketch the box plots
for each year to detect any other trends.

(d) Find a trend estimate by using a moving average filter. Plot this
trend.

(e) Estimate the seasonal component Sk, if any.

(f) Consider the deseasonalized data d¢ = X; — S;,t =1,...,n. Rees-
timate a trend from {d;} by applying a moving average filter to
{d:}; call it i, say.

(g) Plot the residuals ry = X; — 1, — S,. Does it look like a white noise
sequence? If not, can you make any suggestions?
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Probability Models

2.1 INTRODUCTION

In the next three chapters, we discuss some theoretical aspects of time series
modeling. To gain a better understanding of the microscopic component {N;},
basic probability theories of stochastic processes have to be introduced. This
is done in the present chapter, and Chapters 3 and 4 deal with commonly
used ARIMA models and their basic properties. In Chapter 5, two examples
illustrating ideas of these chapters are given in detail with SPLUS commands.
Readers who want to become acquainted immediately with series model fitting
with SPLUS may want to review some of these examples at this point.

Although one may argue that it is sufficient for a practitioner to analyze a
time series without worrying about the technical details, we feel that balanced
learning between theory and practice would be much more beneficial. Since
time series analysis is a very fast moving field, topics of importance today
may become passé in a few years. Thus it is vital for us to acquire some basic
understanding of the theoretical underpinnings of the subject so that when
new ideas emerge, we can continue learning on our own.

2.2 STOCHASTIC PROCESSES

Definition 2.1 A collection of random variables {X (t) : t € R} is called a
stochastic process.

15
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In general, {X(t): 0 <t < oo} and {X;:t=1,2,...,n} are used to define
a continuous-time and a discrete-time stochastic process, respectively. Recall
that all the X’s are defined on a given probability space (2, F, P). Thus,

X: =Xi(w): Q> R for a fixed t.

On the other hand, for a given w € 2, X;(w) can be considered as a function
of t and as such, this function is called a sample function, a realization, or a
sample path of the stochastic process. For a different w, it will correspond to a
different sample path. The collection of all sample paths is called an ensemble.
All the time series plots we have seen are based on a single sample path.
Accordingly, time series analysis is concerned with finding the probability
model that generates the time series observed.

To describe the underlying probability model, we can consider the joint

distribution of the process; that is, for any given set of times (t1,...,t,),
consider the joint distribution of (X,,..., X, ), called the finite-dimensional
distribution.

Definition 2.2 Let T be the set of all vectors {t = (t1,...,tn) € T" : t) <
<+ <tp, n=1,2,...}. Then the (finite-dimensional) distribution func-
tions of the stochastic process {X:,t € T} are the functions {Fy(-),t € T}
defined for t = (t1,...,t,) by

Ft(ﬂ:) =P(Xt1 < .’L‘l,...,th S.’L‘n), T = ($1,...,.’En), € R".

Theorem 2.1 (Kolmogorov’s Consistency Theorem) The probability distri-
bution functions {F¢(-),t € T} are the distribution functions of some stochas-
tic process if and only if for any n € {1,2,...},t = (t1,...,tn) € T and
1<i<n,

im  Fy(z) = Fy;) (2(2)), (2.1)
where t(i) and x(i) are the (n — 1)-component vectors obtained by deleting the
ith components of t and x, respectively.

This theorem ensures the existence of a stochastic process through spec-
ification of the collection of all finite-dimensional distributions. Condition
(2.1) ensures a consistency which requires that each finite-dimensional distri-
bution should have marginal distributions that coincide with the lower finite-
dimensional distribution functions specified.

Definition 2.3 {X;} is said to be strictly stationary if for all n, for all
(t1,...,tn), and for all 7,

(Xtyyeo oy Xt) < (Xeyars -y Xtpsr),s

where £ denotes equality in distribution.
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Intuitively, stationarity means that the process attains a certain type of
statistical equilibrium and the distribution of the process does not change
much. It is a very restrictive condition and is often difficult to verify. We
next introduce the idea of covariance and a weaker form of stationarity for a
stochastic process.

Definition 2.4 Let {X;:t € T} be a stochastic process such that var(X;) <
oo for all t € T. Then the autocovariance function vx(-,-) of {X;} is
defined by

vx(r,s) = cov(X;, X,) = E[(X, — EX,)(Xs — EX,)], rseT.

Definition 2.5 {X,} is said to be weakly stationary (second-order sta-
tionary, wide-sense stationary) if

(i) E(X:)=p forallt.
(i1) cov (Xi, Xeyr) =~(1) for allt and for all 7.

Unless otherwise stated, we assume that all moments, E|X;|*, exist whenever

they appear. A couple of consequences can be deduced immediately from
these definitions.

1. Take 7 = 0,cov(X¢, X:) = v(0) for all t. The means and variances of a
stationary process always remain constant.

2. Strict stationarity implies weak stationarity. The converse is not true
in general except in the case of a normal distribution.

Definition 2.6 Let {X:} be a stationary process. Then
(i) ¥(1) = cov(X¢, Xt4r) is called the autocovariance function.
(i) p(7) = ~v(7)/7(0) is called the autocorrelation function.

For stationary processes, we expect that both v(-) and p(-) taper off to zero
fairly rapidly. This is an indication of what is known as the short-memory
behavior of the series.

2.3 EXAMPLES

1. X, are i.i.d. random variables. Then

(1) = 1, 7=0,
PAT)= 0, otherwise.

Whenever a time series has this correlation structure, it is known as a
white noise sequence and the whiteness will become apparent when we
study the spectrum of this process.
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2. Let Y be a random variable such that var Y =c2. Let Y1 = Yo =--. =

Y;=---=Y. Then
p(ry=1 for all 7.

Hence the process is stationary. However, this process differs substan-
tially from {X:} in example 1. For {X;}, knowing its value at one time
t has nothing to do with the other values. For {Y;}, knowing Y7 gives
the values of all the other ¥;’s. Furthermore,

1
E(Xl +---+X,) > EX; =y by the law of large numbers.

But (Y7 + -+ Yy)/n =Y. There is as much randomness in the nth
sample average as there is in the first observation for the process {¥:}.
To prevent situations like this, we introduce the following definition.

Definition 2.7 If the sample average formed from a sample path of a
process converges to the underlying parameter of the process, the process
is called ergodic.

For ergodic processes, we do not need to observe separate independent
replications of the entire process in order to estimate its mean value
or other moments. One sufficiently long sample path would enable us
to estimate the underlying moments. In this book, all the time series
studied are assumed to be ergodic.

. Let X; = Acos@t + Bsinft, A,B ~ (0,0%) i.i.d. Since EX; = 0, it

follows that

COV(Xt+h, Xt) = E(Xt+hXt)
= E(Acosf(t+ h)+ Bsinb(t + h))(Acost + Bsinbt)
= o2 cosbh.

Hence the process is stationary.

2.4 SAMPLE CORRELATION FUNCTION

In practice, v(7) and p(r) are unknown and they have to be estimated from

the data. This leads to the following definition.

Definition 2.8 Let {X,} be a given time series and X be its sample mean.

Then

(i) Cx = Y07 (X: — X)(Xex — X)/n is known as the sample auto-
covariance function of X,.

(i3) T, = Ck/Cy is called the sample autocorrelation function (ACF).
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The plot r, versus k is known as a correlogram. By definition, rq = 1.
Intuitively, Ci approximates y(k) and ry approximates p(k). Of course, such
approximations rely on the ergodicity of the process. Let us inspect the ACF
of the following examples. In the exercise, readers are asked to match the
sample ACF with the generating time series.

1. For a random series (e.g., ¥}’s are 1.i.d.), it can be shown that for each

fixed k, as the sample size n tends to infinity,
i ~ AN(0,1/n);

that is, the random variables \/n 7 converge in distribution to a stan-
dard normal random variable as n — oo.

Remark. A statistic T}, is said to be AN(un,02) (asymptotic normally
distributed with mean u, and variance 62) if (T, — i1, )/0n converges in
distribution to a standard normal random variable as the sample size n
tends to infinity. For example, let X,..., X, be i.i.d. random variables
with E(X;) = p and var(X;) = 0 > 0. Let X,, = (37, Xi)/n and

Xn—p
T, = .
a/\/n

Then by the central limit theorem, T}, converges in distribution to a
standard normal random variable as n — oo [i.e., X, is said to have an
AN(g,0?/n)]. In this case, yu, = p and 02 = 0% /n.

Y=Y, =1

. A stationary series often exhibits short-term correlation (or short-memory
behavior), a large value of p; followed by a few smaller correlations which
subsequently get smaller and smaller.

. In an alternating series, r; alternates between positive and negative
values. A typical example of such a series is an AR(1) model with a
negative coefficient, Y; = —¢Y;_1 + Z;, where ¢ is a positive parameter
and Z, are i.i.d. random variables.

. If seasonality exists in the series, it will be reflected in the ACF. In
particular, if X; = acostw, it can be shown that rp & cos kw.

. In the nonstationary series case, ry does not taper off for large values of
k. This is an indication of nonstationarity and may be caused by many
factors.

Notice that the examples above suggest that we can “identify” a time series
through inspection of its ACF. Although this sounds promising, it is not a
procedure that is always free of error. When we calculate the ACF of any
given series with a fixed sample size n, we cannot put too much confidence in
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the values of r; for large k’s, since fewer pairs of (X;, X;_) will be available
for computing 7, when k is large. One rule of thumb is not to evaluate
for k£ > n/3. Some authors even argue that only r,’s for £ = O(log n) should
be computed. In any case, precautions must be taken. Furthermore, if there
is a trend in the data, X; = Ty + N;, then X; becomes nonstationary (check
this with the definition) and the idea of inspecting the ACF of X; becomes
questionable. It is therefore important to detrend the data before interpreting
their ACF.

2.5 EXERCISES

1. Given a seasonal series of monthly observations {X;}, assume that the
seasonal factors {S;} are constants so that S; = S; 15 for all t and
assume that {Z;} is a white noise sequence.

(a) With a global linear trend and additive seasonality, we have X; =
a+ Bt + S; + Z;. Show that the operator A;; = 1 — B2 acting on
X, reduces the series to stationarity.

(b) With a global linear trend and multiplicative seasonality, we have
X: = (a+ Bt)S; + Z;. Does the operator Ajs reduce X; to station-
arity? If not, find a differencing operator that does.

2. If {Xy = Acostw : t =1,...,n} where A is a fixed constant and w is a
constant in (0, 7), show that ry — coskw as n — co. Hint: You need
to use the double-angle and summation formulas for a trigonometric
function.

3. Let Z; ~ N(0,1) i.i.d. Match each of the following time series with its
corresponding correlogram in Figure 2.1.
(a) X; = Z;.
(b) X¢=—-0.3X—1+ Z;.
(¢) X; = sm(71'/3 Yt + Zy.
(d) X —0.3Z;_1.
(e) X,; =2- 3t+Zt
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Autoregressive Moving
Average Models

3.1 INTRODUCTION

Several commonly used probabilistic models for time series analysis are intro-
duced in this chapter. It is assumed that the series being studied have already
been detrended by means of the methods introduced in previous chapters.
Roughly speaking, there are three kinds of models: the moving average model
(MA), the autoregressive model (AR), and the autoregressive moving average
model (ARMA). They are used to describe stationary time series. In addition,
since certain kinds of nonstationarity can be handled by means of differencing,
we also study the class of autoregressive integrated moving average models

(ARIMAs).

3.2 MOVING AVERAGE MODELS

Let {Z;} be a sequence of independent identically distributed random vari-
ables with mean zero and variance o2, denoted by Z; ~ i.i.d.(0,02). If we
require {Z;} only to be uncorrelated, not necessarily independent, then {Z,}
is sometimes known as a white noise sequence, denoted by Z; ~ WN(0, 0?).
Intuitively, this means that the sequence {Z;} is random with no system-
atic structures. Throughout this book we use {Z;} to represent a white
noise sequence in the loose sense; that is, {Z;} ~ WN(0,0?%) can mean ei-
ther {Z;} ~ i.i.d.(0,0?) or that {Z;} are uncorrelated random variables with
mean zero and variance o2. By forming a weighted average of Z;, we end up

23
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with a moving average (MA) time series model as follows:
Yo =24 +61Zc 1+ +0,Zi—q, Zi~WN(0,0%). (3.1)

This is called a moving average model of order g, MA(g). It has many at-
tractive features, including simple mean and autocovariance structures.

Proposition 3.1 Let {Y;} be the MA(g) model given in (3.1). Then:
(i) EY; =0.
(i) var Y, = (1+6% + - -- +9§)02.

(112)
0, | k> g,
cov(Y;, Yiar) = Ikl
( ty Lt+ ) 02 ;0 9i0i+|k|, [klf q.
Proof

cov(Y, Yerk) = E(¥iYisr)
= E(Zi+ - +0,2:-q)(Zerk + - + 00 Ze1k—q)

q-—|k|
= 0’2 Z 0i0i+|k|’ where 00 é 1. 3
i=0
Observe that
q—|k| q
> 6bin/ D 0 kI<q k#0,
plk) = =0 i=0
1, k=0,
0, otherwise.

Hence, for an MA{q) model, its ACF vanishes after lag g. It is clearly a
stationary model. In fact, it can be shown that an MA(g) model is strictly
stationary.

Example 3.1 Consider an MA(1) model Y; = Z; — 61Z,—1. Its correlation
function satisfies

1, k=0,
py(k) =4 —61/(1+6}), |k|=1,

0, otherwise.

Consider another MA(1) model:

1
Xi=2¢ - o—lzt—l;
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then
px (k) = py (k). O

Both {X.} and {Y;} have the same covariance function. Which one is
preferable, {X;} or {Y;} ? To answer this question, express {Z;} backward in
terms of the data. For the data set {Y;}, the residual {Z;} can be written as

Z: = Yi+6:1Z;_1 =Y, +601(Yi-1+6:12;_2)
= Yi+6Yio1 +63Y 4. (3.2)

For the data set {X;}, the residual {Z;} can be written as

1 1 1
Zy=Xi+ 211 ==X+ X1+ 3

o 5 7 Xeoa+-.  (33)

If |61 < 1, equation (3.2) converges and equation (3.3) diverges. When we
want to interpret the residuals Z;, it is more desirable to deal with a convergent
expression, and consequently, expression (3.2) is preferable. In this case, the
MA(1) model {Y;} is said to be invertible.

In general, let {Y;} be an MA(g) model given by Y; = 6(B)Z;, where
6(B)=1+6,B+ -+ 0yB% with BZ, = Z,_;. The condition for {Y;} to be
invertible is given by the following theorem.

Theorem 3.1 An MA (q) model {Y;} is invertible if the roots of the equation
6(B) = 0 all lie outside the unit circle.

Proof. The MA(1) case illustrates the idea. a

Remark. If a constant mean u is added such that Y; = p + 6(B)Z;, then
EY, = u but the autocovariance function remains unchanged.

3.3 AUTOREGRESSIVE MODELS

Another category of models that is commonly used is the class of autore-
gressive (AR) models. An AR model has the intuitive appeal that it closely
resembles the traditional regression model. When we replace the predictor in
the classical regression model by the past (lagged) values of the time series,
we have an AR model. It is therefore reasonable to expect that most of the
statistical results derived for classical regression can be generalized to the AR
case with few modifications. This is indeed the case, and it is for this reason
that AR models have become one of the most used linear time series mod-
els. Formally, an AR(p) model {Y;} can be written as ¢(B)Y; = Z;, where
$(B) = (1— ¢1B —--- — ¢,B%), BY; = Y;_,, so that

i = 41V +"'+¢th—p+Zt-
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Formally, we have the following definitions.

Definition 3.1 {Y;} is said to be an AR(p) process if.
(i) {Y:} is stationary.
(ii) {Y:} satisfies ¢(B)Y; = Z; for all t.

Definition 3.2 {Y;} is said to be an AR(p) process with mean y if {Y: —
u} is an AR(p) process.

3.3.1 Duality between Causality and Stationarity™

There seems to be confusion among different books regarding the notion of
stationarity and causality for AR (ARMA in general) models. We clarify this
ambiguity in this section.

Main Question: Is it true that an AR(p) always exists?

To answer this question, consider the simple AR(1) case, where
Y; = ¢Yso1 + Zi, Zy ~ WN(0,0?). (3.4)

Tterating this equation, Y; = Z; + ¢Z;—1 + -+ + ¢*"1Y;_x_1. This leads to
the following question.

Question 1. Can we find a stationary process that satisfies equation (3.4)7
First, if such a process {Y;} did exist, what would it look like?
o Since {Y;} satisfies (3.4), it must have the following form:
k
Y= ¢ Zi+ 6 Yk
=0
e Assume for the time being that |¢| < 1. Since {Y;} is stationary, EY;? =

constant for all ¢. In particular, denote ||V;||> = EY;?; we have

k
”Yt - Z&Zt—juz = ¢2k+2||}ft—k—1 ||2 — 0 as k — oo.
j=0

Hence, Y; = 372, ¢’ Z,—jin L2. For this newly defined process Y; = 3_.2 ¢’ Z¢—j,

we have the following properties:

*Throughout this book, an asterisk indicates a technical section that may be browsed
casually without interrupting the flow of ideas.
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(i) Y; satisfies (3.4) for all ¢.
(ii) EY; =0, var Y; = 02/(1 - ¢?).
(iii)

o) oo

cov(Ys,Yopr) = cov (D 25, ¢ Zeir
7=0 =0
= o) ¢ =0%"/(1-¢).
j=0

Therefore, the newly defined {Y;} is stationary and the answer to Question 1
is that there exists a stationary AR(1) process {Y;} that satisfies (3.4).

Question 2. How about the assumption that |¢| > 17

This assumption is immaterial, since it is not needed once we have estab-
lished the correct form of {Y;}. Although when |¢| > 1, the process {¥;} is no
longer convergent, we can rewrite (3.4) as follows. Since Y41 = ¢Y; + Zi41,
dividing both sides by ¢, we have

1 1
Y = EYt+l - aztﬂ- (3.5)
Replacing t by t+1in (3.5), we arrive at Y;11 = (Yi42— Zi+2)/¢. Substituting
this expression into (3.5) and iterating forward on ¢, we have

1 1
}/t = _ZZH_I + EY;H—I
1 1/1 1
= _EZt+1 + P <$Yt+2 - EZt+2)
1 1 1
= = _EZH-l — pZt+2—---+—¢k+1Yt+k+1~
Therefore, Y; = —Z}’il #77Z;+j, is the stationary solution of (3.4). This

process, {Z;}, is, however, unnatural since it depends on future values of
{Y:}, which are unobservable. We have to impose a further condition.

Causal Condition: A useful AR process should depend only on its history
[i.e., {Zk : k = —00,...,t}], not on future values. Formally, if there exists a
sequence of constants {1;} with > ;2 [#s] < oo such that ¥; = 32 ¥ Z,_s,
the process {Y;} is said to be causal (stationary in other books).

Question 3. Would the causal condition be too restrictive?

Let {Y:} be the stationary solution of the noncausal AR(1) ¥; = ¢Y;_; +
Zi, |¢| > 1. We know that ¥; = 3222, —¢~7Z;; is a stationary solution to
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(3.4), albeit noncausal. However, it can be shown that {Y;} also satisfies
va. - ¢—1}/t—1 + Zta Zt ~ (01 &2)

for a newly defined noise {Z;} ~ i.i.d.(0,52) (see Exercise 1). Consequently,
without loss of generality, we can simply consider causal processes! For the
AR(1) case, the causal expression is ¥; = 372 ¢7Z; ;.

3.3.2 Asymptotic Stationarity

There is another subtlety about the AR(1) process. Suppose that the process
does not go back to the remote past but starts from an initial value Yy. Then

Yi=Zi+ ¢Zs 1+ Zp_g + -+ ¢ Z1 + ¢V

If Yy is a random variable that is independent of the sequence {Z;} such
that EY) # 0, then EY; = ¢'EY;. In this case, the process {Y;} is not even
stationary. To circumvent this problem, assume that Yj is independent of the
sequence {Z;} with EY; = 0. Consider the variance of Y;:

varY; = 02(1+¢2+---+¢2(t_1))+¢2tvarYo
0.2 1— 2t
= —__(1_(;; )+¢2tvarYb
o2

(—1—:¢—2) as t — o0, |¢|<1
Even with EYy = 0, the process {¥;} is nonstationary since its variance is
changing over time. It is only stationary when ¢ is large (i.e., it is stationary in
an asymptotic sense). With fixed initial values, the AR model is not stationary
in the rigorous sense; it is only asymptotically stationary. It is for this reason
that when an AR model is simulated, we have to discard the initial chunk of
the data so that the effect of Yy is negligible.

3.3.3 Causality Theorem

Recall that a process is said to be causal if it can be expressed as present and
past values of the noise process, {Z;, Zi—1, Z;_2,...}. Formally, we have the
following definition:

Definition 3.3 A process {Y;} is said to be causal if there exists a sequence
of constants {1;}’s such that Y; = Z;io Y Zy—; with Z;’io [¥;] < oc.

For an AR(p) model ¢(B)Y; = Z;, we write

Y= 6" (BY% = 9(B)Z = Y i (35)

=0
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where ¢y = 1. Under what conditions would this expression be well defined
[i.e., would the AR(p) model be causal]? The answer to this question is given
by the following theorem.

Theorem 3.2 An AR(p) process is causal if the roots of the characteristic
polynomial ¢(z) = 1 — ¢12 — -+ — ¢p2P are all lying outside the unit circle

[i.e., {z:9(2) =0} C{z:|2| > 1}].

Proof. Let the roots of ¢(z) be (1,...,(. Note that some of them may be
equal. By the assumption given, we can arrange their magnitudes in increasing
order so that 1 < [{1] < - < |{p|. Write |(1] = 1 + € for some € > 0. For z
such that |z| < 1+¢,¢(2) # 0. Consequently, there is a power series expansion
for ¢(z)~! for |z| < 1+ ¢; that is,

¢L > iz (3.7)
i=0

is a convergent series for |2|] < 1 + €. Now choose 0 < § < ¢ and substitute
z =1+ ¢ into equation (3.7). Then

1 > ;
= ; 5):
D §¢(1+)<oo

Therefore, there exists a constant M > 0 so that for all 4,
[0i(1 +0)Y| < M;

that is, for all 7, ,
|| < M(L+6)~"

Hence, > o, [4h;| < 00. As a result, the process
Y T i
s = ¢( K Z YiZy-

is well defined and hence causal. O

3.3.4 Covariance Structure of AR Models

Given a causal AR(p) model, we have

v(k) = E(YiYayx) = (Zmzt ) (szzt+k_z>
=0

o? Zwiwm. (3.8)
i=0
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Example 3.2 For an AR(1) model Y; = ¢Yi_1 + Z:, we have 9; = ¢, so
that v(k) = a2¢*/(1 — ¢?) and p(k) = ¢*. a

Although we can use equation (3.8) to find the covariance function of a
given AR(p) model, it requires solving ¥'s in terms of ¢’s and it is often
difficult to find an explicit formula. We can finesse this difficulty by the
following observation. Let {Y;} be a given stationary and causal AR(p) model.
Multiply Y; throughout by Y;_g:

YiVik=d1Yi1Yin+- -+ ¢pYie-pYik + ZiYei.
Taking expectations yields

(k) = p1y(k — 1) + - + ¢pv(k — p).

Dividing this equation by (0), we get
p(k) = ¢1p(k = 1) + -+ + ¢pp(k —p) for all k.

We arrive at a set of difference equations, the Yule-Walker equations, whose
general solutions are given by

p(k) = Ay, ™ 4t AprlHL

where {n;} are the solutions of the corresponding characteristic equation of
the AR(p) process,
1—¢12P = —9p2? =0

Example 3.3 Let {Y;} be an AR(2) model such that Y; = ¢1Y;—1+ Y2+
Z:. The characteristic equation is 1 — ¢12z — ¢222 = 0 with solutions

1
W":E@ (—¢1ﬂ:\/¢%+4¢2), i=1,2

According to Theorem 3.2, the condition |m;| > 1, i = 1,2, guarantees that
{Y:} be causal. This condition can be shown to be equivalent to the following
three inequalities:

¢1 + ‘;32 < 15

o1—¢2 > -1, (3.9)

|¢2| < 1.

To see why this is the case, let the AR(2) process be causal so that the
characteristic polynomial ¢(z) = 1 — ¢12 — ¢22? has roots outside the unit
circle. In particular, none of the roots of ¢(z) = 0 lies between [—1,1] on the
real line. Since ¢(z) is a polynomial, it is continuous. By the intermediate
value theorem, ¢(1) and ¢(—1) must have the same sign. Otherwise, there
exists a root of ¢(z) = 0 between [—1,1]. Furthermore, $(0) has the same sign
as ¢(1) and ¢(-1). Now, $(0) =1 >0, so ¢(1) > 0 and ¢(—1) > 0. Hence,

#(1)=1-¢1—¢2>0;
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that is,
P2+ <1
Also,
¢(-1)=1+¢1—¢2>0;
that is,

¢2 —¢1 < L.

To show that |@a| < 1, let a and (3 be the roots of ¢(z) =0 so that |a| > 1
and |B] > 1 due to causality. According to the roots of a quadratic polynomial,
we have

-1
a/B - 52_7
1
2| = 1Bl
_ 1
I
< 1,

showing that causality for an AR(2) model is equivalent to (3.9).

Given ¢1 and ¢2, we can solve for m, and wo. Furthermore, if the two
roots are real and distinct, we can obtain a general solution of p(k) by means
of solving a second-order difference equation. Details of this can be found
in Brockwell and Davis (1991). The main feature is that the solution p(k)
consists of a mizture of damped exponentials. In Figure 3.1, plots of the ACF
for an AR(2) model for different values of ¢1 and ¢ are displayed. Notice
that when the roots are real (in quadrants 1 and 2), the ACF of an AR(2)
model behaves like an AR(1) model. It is either exponentially decreasing, as
in quadrant 1, or alternating, as in quadrant 2. On the other hand, when the
roots are complex conjugate pairs, the ACF behaves like a damped sine wave,
as in quadrants 3 and 4. In this case, the AR(2) model displays what is known
as pseudoperiodic behavior. a

To summarize, relationships between causality and invertibility of an AR
model ¢(B)Y; = Z; and an MA model Y; = #(B)Z, can be represented as
follows:

Z - |[p(B)=9¢(B)'| =Y:; Y = |n(B)=0(B)""| - Z.
Causal Invertible
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Fig. 3.1 ACF of an AR(2) model.

3.4 ARMA MODELS

Although both the MA and AR models have their own appeal, we may have
to use a relatively long AR or long MA model to capture the complex struc-
ture of a time series. This may become undesirable since we usually want
to fit a parsimonious model; a model with relatively few unknown parame-
ters. To achieve this goal, we can combine the AR and MA parts to form an
autoregressive moving average (ARMA) model.

Definition 3.4 {Y;} is said to be an ARMA(p, q) process if
(i) {Y:} is stationary.
(ii) For allt, ¢(B)Y; =0(B)Z;, where Z; ~ WN(0,0?).

Definition 3.5 {Y;} is called an ARMA(p,q) with mean p if {Y; — pu} is
an ARMA(p, q).

Given the discussions about causality and invertibility, it is prudent to
assume that any given ARMA model is causal and invertible. Specifically, let

#(B)Y: = 6(B)Z:,

with
9(B)=1-$:1B -+ — ¢, B,
6(B)=1-6B—---—0,B9,
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where ¢(B) and 6(B) have no common roots, with ¢(B) being causal [i.e.,
¢(B) satisfies Theorem 3.2] and 6(B) being invertible [i.e., §( B) satisfies The-
orem 3.1]. Under these assumptions, {Y;} is said to be a causal and invertible
ARMA(p, ¢} model. In this case,

6(B) ) =
Y; = mzt = 1[1(B)Zt » Zy — ’Q[J(B) - %E%% - Y,
zs?ggnﬂwm; Y, —|7(B) = §tg} |- 2

Example 3.4 Let Y; — ¢Y;—1 = Zy — 02,1 be an ARMA(1,1) model with
¢ =0.5 and § =0.3. Then

#(B) = (1-0.3B)¢~1(B)
= (1-03B)(1+0.5B+ (0.5)2B% +--)
= 1+02B+0.1B*+0.05B%+---
Hence, ¥, = 0.2x (0.5)71, i =1,2,...,4p = 1. Also, m; =0.2x (0.3)*"}, i =

1,2,...,mg = 1. Therefore,

pk) = Z%%H/Zd’?
i=0 i=0
~ (0.5)F, O

The usefulness of ARMA models lies in their parsimonious representation.
As in the AR and MA cases, properties of ARMA models can usually be
characterized by their autocorrelation functions. To this end, a lucid discus-
sion of the various properties of the ACF of simple ARMA models can be
found on page 84 of Box, Jenkins, and Reinsel (1994). Further, since the
ACF remains unchanged when the process contains a constant mean, adding
a constant mean to the expression of an ARMA model would not alter any
covariance structure. As a result, discussions of the ACF properties of an
ARMA model usually apply to models with zero means.

3.5 ARIMA MODELS

Since we usually process a time series before analyzing it (e.g., detrending), it
is natural to consider a generalization of ARMA models, the ARIMA model.
Let W; = (1 — B)%Y, and suppose that W, is an ARMA(p,q), ¢(B)W; =
6(B)Z;. Then ¢(B)(1 — B)¢Y; = (B)Z;. The process {Y;} is said to be
an ARIMA (p, d, q), ARIMA autoregressive integrated moving average model.
Usually, d is a small integer (< 3). It is prudent to think of differencing as a
kind of data transformation.
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Example 3.5 Let Y; = a + Bt + Ny, so that (1 — BYY; = B + Z;, where
Zy = Ny — Ni—1. Thus, (1 — B)Y; satisfies an MA(1) model, although a non-
invertible one. Further, the original process {Y;} is an ARIMA(0,1,1) model,
and as such, it is noncausal since it has a unit root. O

Example 3.6 Consider an ARIMA(0,1,0), a random walk model:
Yi=Y1+ 2.

IfYo = 0, then Y; = Z:Zl Z;, which implies that var Y; = to®. Thus, in
addition to being noncausal, this process is also nonstationary, as its variance
changes with time. O

As another illustration of ARIMA model, let P, denote the price of a stock
at the end of day . Define the return on this stock asry = (P.—P;—1)/Pi—1. A
simple Taylor’s expansion of the log function leads to the following equation:

S P -P_,
¢ B,
P — P
~ log(l-l——tp t 1)
1
= log B
B,

= logP, —logP_;.

Therefore, if we let Y; = log P,, and if we believe that the return on the stock
follows a white noise process (i.e., we model r; = Z;), the derivation above
shows that the log of the stock price follows an ARIMA(0,1,0), random walk
model. It is because of this that many economists attempt to model the return
on an equity (stock, bond, exchange rate, etc.) as a random walk model.

In practice, to model possibly nonstationary time series data, we may apply
the following steps:

1. Look at the ACF to determine if the data are stationary.
2. If not, process the data, probably by means of differencing.
3. After differencing, fit an ARMA(p, ¢} model to the differenced data.

Recall that in an ARIMA(p, d, ¢) model, the process {Y;} satisfies the equa-
tion ¢(B)(1 — B)4Y; = 6(B)Z;. It is called integrated because of the fact that
{Y:} can be recovered by summing (integrating). To see this, consider the
following example.

Example 3.7 Let {Y;} be an ARIMA(1,1,1) model that follows

(1-¢B)(1-B)Y; = Z; = 0Z;_..
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Then Wy = (1 — B)Y; = Y; — Yi—1. Therefore,
4 t
ZWkZZ(Yk—Yk_l):Yt_YO:Yt 7'f Yo =0.
k=1 k=1

Hence, Y, is recovered from W; by summing, hence integrated. The differenced
process {W,} satisfies an ARMA(1,1) model. O

3.6 SEASONAL ARIMA

Suppose that {Y;} exhibits a seasonal trend, in the sense that ¥; ~ Y;_, ~
Y;_2s---. Then Y, not only dependson Y;_1, Yi—o, ..., but also ¥;_,, Y324, .. ..
To model this, consider

#(B)®p(B*)(1 — B)¥(1 — B*)PY; = 8(B)O¢q(B*)Z:, (3.10)
where
#B) = 1—-¢1B—---—¢pBP,
9B) = 1-6,B—-.-—6,B9,
®p(B°) = 1-—®B*—...—®pB*,
0g(B®) = 1-©,B*—...—8gB*".

Such {Y;} is usually denoted by SARIMA(p,d, q) x (P, D,Q),. Of course, we
could expand the right-hand side of (3.10) and express {Y;} in terms of a
higher-order ARMA model (see the following example). But we prefer the
SARIMA format, due to its natural interpretation.

Example 3.8 Let us consider the structure of an SARIMA(1,0,0)x(0,1,1)12
time series {Y:}, which is expressed as

(1—¢B)1—-B*)Y, = Z, —0Z;_12,(1 — B*? —¢B+¢B¥)Y, = Z, - 6Z,_12,
so that
Vi=Yi12+ ¢ (Vi1 —Yio13) + Z; — 0Z; 1. (3.11)

Notice that Y; depends on Y;_13,Y:_1,Y:—13 as well as Zy_12. If {Y;} repre-
sents monthly observations over a number of years, we can tabulate the data
using two-way ANOVA as follows:

1994 1995 1996
January V) Yiz Yo

December Yia  You  Yag

For example, Yo6 = f(Yo5,Y14,Y13) + ---. In this case there is an ARMA
structure for successive months in the same year and an ARMA structure for
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the same month in different years. Note also that according to (3.11), ¥; also
follows an ARMA(13,12) model, with many of the intermediate AR and MA
coefficients being restricted to zeros. Since there is a natural interpretation
for an SARIMA model, we prefer a SARIMA parameterization over a long

ARMA parameterization whenever a seasonal model is considered. d
3.7 EXERCISES
1. Determine which of the following processes are causal and/or invertible:

(a) Y; +0.2Y;_; — 0.48Y;_y = Z;.
(b) Y; +1.9Y;_; +0.88Y; 3 = Z, + 0.2Z,_; +0.7Z;_o.
(c) Y 4+0.6Y0 = Z; +1.2Z,_,.

(d) Y; +1.8Y;_; +0.81Y;_5 = Z;.

(€) Y +1.6Y,_1 = Z; —0.4Z,_; +0.04Z;_,.

Let {Y; : t = 0,%1,...} be the stationary solution of the noncausal
AR(1) equation

Yt = ¢},t—1 + Zta |¢| > 17 {Zt} ~ WN(anz)'
Show that {Y;} also satisfies the causal AR(1) equation
Y; =¢7 Y1 + W, {Wi} ~WN(0,6?)

for a suitably chosen white noise process {W;}. Determine 52.

. Show that for an MA(2) process with moving average polynomial 8(z) =

1 — 6,2 — 6222 to be invertible, the parameters (#;,62) must lie in the
triangular region determined by the intersection of the three regions

g +61 <1,
02 -0, < 1,
|02|<1.

. Let Y; be an ARMA(p, ¢) plus noise time series defined by

Y: = X + Wi,
where {W;} ~ WN(0,02),{X:} is the ARMA(p, ¢) time series satisfying
&(B)X; = 0(B)Zy, {Zi} ~ WN(0,02),

and E(W,Z;) = 0 for all s and ¢.
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(a) Show that {Y;} is stationary and find its autocovariance function
in terms of 2 and the ACF of {X,}.

(b) Show that the process U; = ¢(B)Y; is r-correlated, where r =
max(p, ¢), and hence it is an MA(r) process. Conclude that {Y;}
is an ARMA(p,r) process.

5. Consider the time series Y; = Asinwt+ Z,, where A is a random variable
with mean zero and variance 1, w is a fixed constant between (0, 7), and
Z; ~ WN(0,0?), which is uncorrelated with the random variable A.
Determine if {Y;} is weakly stationary.

6. Suppose that Y; = (—1)*Z, where Z is a fixed random variable. Give
necessary and sufficient condition(s) on Z so that {¥;} will be weakly
stationary.

7. Let Y; = Zy — 0Z4_1, Zy ~ WN(0,02).

(a) Calculate the correlation function p(k) of ;.

(b) Suppose that p(1) = 0.4. What value(s) of 8 will give rise to such
a value of p(1)? Which one would you prefer? Give a one-line
explanation.

(c) Instead of an MA(1) model, suppose that Y; satisfies an infinite
MA expression as follows:
Yi=2,+C(Zi-1 + Zi—2+ ), (3.12)

where C' is a fixed constant. Show that Y; is nonstationary.

(d) If {Y;} in equation (3.12) is differenced (i.e., X; = Y; —Y;_1), show
that X, is a stationary MA(1) model.
(e) Find the autocorrelation function of {X;}.

8. Consider the time series
Y; =04Y;_1+045Y; o+ Z: + Z;_1 + 0.252Z; o,
where Z; ~ WN(0, 0?).

(a) Express this equation in terms of the backshift operator B; that
is, write it as an equation in B, and determine the order (p,d, q)
of this model.

(b) Can you simplify this equation? What is the order after simplifi-
cation?

(c) Determine if this model is causal and/or invertible.

(d) If the model is causal, find the general form of the coefficients ;s
so that Y; = 322 0 4; Z;—;.

(e) If the model is invertible, find the general form of the coefficients
7;’s so that Zy = 3772 m;Ye— ;.
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Estimation in the Time
Domain

4.1 INTRODUCTION
Let {Y;} be an ARIMA(p, d, ¢) model that has the form
¢(B)(1 — B)*(Y; — p) = 6(B)Zs, Z: ~ WN(0,5?).

The unknown parameters in this model are (u, @1, ..., ¢p,01,...,604,0%) and
the unknown orders (p, d, q). We shall discuss the estimation of these param-
eters from a time-domain perspective. Since the orders of the model, (p, d, q),
can be determined (at least roughly) by means of inspecting the sample ACF,
let us suppose that the orders (p,d, q) are known for the time being. As in
traditional regressions, several statistical procedures are available to estimate
these parameters. The first one is the classical method of moments.

4.2 MOMENT ESTIMATORS

The simplest type of estimators are the moment estimates. If EY; = u, we
simply estimate u by Y = (1/n) 31, ¥; and proceed to analyze the demeaned
series X; = Y; — Y. For the covariance and correlation functions, we may use
the same idea to estimate v(k) by

39
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Similarly, we can estimate p(k) by

T = ﬂ

Co
One desirable property of r is that it can be shown that when Y; ~ WN(0, 1),
re ~ AN(0,1/n). Therefore, a 95% CI of pi is given by +2/./n. However,
this method becomes unreliable when the lag, k, is big. A rule of thumb is to
estimate p(k) by ri for k < n/3 or for k no bigger than O(log(n)). Because of
the ergodicity assumption, moment estimators are very useful in estimating
the mean or the autocovariance structure. Estimations of the specific AR or
MA parameters are different, however.

4.3 AUTOREGRESSIVE MODELS

Given the strong resemblance between an AR(p) model and a regression
model, it is not surprising to anticipate that estimation of an AR(p) model is
straightforward. Consider an AR(p) process

Yi=¢1Yeici+- -+ 02+ Z4. (4.1)

This equation bears a strong resemblance to traditional regression models.
Rewriting this equation in the familiar regression expression,

Yioa
n:(¢17"'7¢1’) +Zt=Y;—1¢+Zta

where ¢ = (¢1,...,¢p) and Y,y = (Yi1,...,Y;—p). The least squares
estimate (LSE) of ¢ is given by

n -1 n

¢= < Z Yt—lY;—1> ( Z Yt—le) .
t=p+1 t=p+1

Standard regression analysis can be applied here with slight modifications.

Furthermore, if Z; ~ N(0,0?) i.i.d., then ¢ is also the maximum likelihood
estimate (MLE). In the simple case that p = 1, Y; = ¢Y;—1 + Z;, we have
¢ = Z?=p+l YiYi-1/ 2:1=p+1 Y2,

Further, Z; = Y; — Y,_, & is the fitted residual and almost all techniques
concerning residual analysis from classical regression can be carried over. Fi-
nally, standard asymptotic results such as consistency and asymptotic nor-
mality are available.

Theorem 4.1 A
ﬁ (¢ - ¢)z’ N(O’ 0.2I1;1)’
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where 7 denotes convergence in distribution of the corresponding random

variables as the sample size n — 0o and

Y, v(0) (1) - Ap-1)
L —E N =] 70) - (p-2)
Y * X .. 7(.0)

Example 4.1 For an AR(1) model, we have \/n (¢ — ¢)-Z N(0, 0% /~(0)),
with

v(0) = varY; =¢? var Y;_; + o
= ¢°v(0) +0°
Thus, 7(0) = 02/(1 = ¢?) [i.e., ¢ ~ AN(¢,(1 - ¢)/n)]. O

From the preceding theorem, usual inference such as constructing approxi-
mated confidence intervals or testings for ¢ can be conducted. Alternatively,
we can evaluate the Yule-Walker (Y-W) equation via multiplying equation
(4.1) by Y;_, and taking expectations,

o1y(k— 1)+ -+ dpy(k - p),
plky = ¢plk—1)+ - +¢pplk—p), k=1,...,p.

=2

~
>

N’
I

In matrix notation, these equations become

p(0)  p(1) - pl@-1)
pll) | e e ee-2) |
o(p) pp—1) - p(0) %

Hence, the Yule-Walker estimates are the ¢ such that

) 1 TLo ottt Tpo1 - T1
b= R lr= 1 1 - 7y :
o e e 1
p—1 Tp

Again, asymptotic properties of the Y-W estimates can be found. When
the sample size n is big and the order p is moderate, computational cost
can be enormous for inverting the matrix R. In practice, it would be much
more desirable to solve these quantities in real time (i.e., in a recursive on-
line manner). The Durbin-Levinson (D-L) algorithm offers such a recursive
scheme. We would not pursue the details of this algorithm, but refer the
interested reader to the discussion given in Brockwell and Davis (1991). In
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any case, most of the computer routines, including those of SPLUS programs,
use this algorithm to estimate the parameters. Roughly speaking, we can
classify the estimation steps as follows:

1. Use the Durbin-Levinson algorithm to evaluate the Yule-Walker esti-
mates.

2. Use the Yule-Walker estimates as initial values to calculate the maxi-
mum likelihood estimates (MLE) of the parameters. Details of the MLE
are given in Section 4.6.

3. To estimate the standard error in the AR equation, use the estimator
1 n
F =1 MW h=dYia Y,
t=p+1

4.4 MOVING AVERAGE MODELS

Contrary to the AR model, estimation for an MA model is much more tricky.
To illustrate this point, consider the simple MA(1) model YV; = Z; — 6Z;_,.
Suppose that we intend to use a moment estimator for . Then

_ —0
=TT
and R
-0
™ = .
1+ 62
Thus,
é:—lﬂ: 1—47‘%
27‘1 ’

This estimator is nonlinear in nature. Such a nonlinearity phenomenon is

even more prominent for an MA(g) model. In general, it will be very difficult

to express the 6;’s of an MA(g) model as functions of r;’s analytically.
Alternatively, if | 6 |< 1, then

Ze=Y,+0Z 1 =Y, +0Y,_ 1 +0%Y, o+ ---.

Let S(6) = Y}, Z2. We can find the 6§ such that S(6) is minimized, where
Zy = Z:(#) implicitly. Note that even in this simple MA(1) case, S(§) can-

not be minimized analytically. In particular, for given Y3,...,Y, and 6, and
conditional on Zy = 0, set
Zy = N,

Zy

Y +0Z: =Yz + 011,

Zn = Yn + 0Z'n.—17
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and compute S.(6) = Y, Z2 for the given 6, where we use S. to denote that
this quantity is evaluated conditional on the initial value Zy = 0. In general,
we can perform a grid search over (—1,1) to find the minimum of S,(#) by
means of a numerical method, the Gauss—Newton method, say. This is also
known as the conditional least squares (CLS) method. Specifically, consider

dZ(6) |
o lo=o-

Zy(0) = Z,(0) + (6 — 6%) (4.2)
from an initial point 8*. Note that this equation is linear in §, thus }";._, Z2(8) =
5.(8) can be minimized analytically to get a new ;). Substitute 6,y for 6*
into (4.2) again and iterate this process until it converges. Note that the
quantities
az,(0*) o+ dZ,—1(6%)
d dé

can be evaluated recursively.

For a general MA(q) model, a multivariate Gauss—Newton procedure can
be used to minimize S,(0) via Z; = Y; + 61Z;—1 + -+ + 0,Z;_4 such that
Zo=2Z_y=---=21_q=0, where 8 = (61,...,6,)".

dZy(8
vz, 280

4.5 ARMA MODELS

Having seen the intricacies in estimating an MA model, we now discuss the
estimation of an ARMA model by means of a simple ARMA(1,1) model.

Example 4.2 Let Y; — ¢Y,—1 = Z; — 0Z;_y. Conditional on Zyg = 0 = Yj,
find (¢,0) that minimizes

S.(6,0) = ZX(¢,9),
t=1

where
Zi =Yy — Yy 1 +02Z;_,. O

For a general ARMA(p, g), we perform a similar procedure to find the esti-
mates by solving a numerical minimization problem. Let Z, =Y; — ¢1Y;_1 —
=Y p+01Zi 1+ -+0,Z;_,. Compute Z;, = Z,(¢,0), t=p+1,...,n
and find the parameters (¢, @) that minimize

5.(.0)= Y 22($,9).

t=p+1

For an invertible MA or ARMA model, the initial values of Yy = Y_; =
Yip = =2y = - = Z1_gq = 0 have little effect on the final parameter
estimates when the sample size is large.
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4.6 MAXIMUM LIKELIHOOD ESTIMATES

Previous discussions focussed mainly on least squares procedure, that is, find-
ing an estimate that minimizes some forms of the sum of mean square errors,
S Z,%(¢,8). Another commonly used statistical procedure in this situation
is the method of maximum likelihood (ML). In general, the likelihood pro-
cedure looks for the parameter value that corresponds most closely with the
data observed. To illustrate the likelihood principle, consider the following
recapturing example adopted from Feller (1968).

Example 4.3 Estimation of Population Size

Suppose that a fund manager wants to launch a financial product in a new
region. He wants to know the demand for the product and thus is interested in
knowing the population size in this region. The manager decides to conduct a
survey and interviews 1000 clients at random in the first round. During the
interview, each of these clients is issued an identification code. After several
months, the manager interviews another round of 1000 clients at random, and
it is found that 100 clients in the second round were interviewed in the first
round. What conclusion can be drawn concerning the size of the population
in this region? To answer this question, define the following:

n = unknown population size
n, = number of people interviewed in the first round
r = number of people interviewed in the second round
k = number of people in the second round who were
identified in the first round
gr(n) = probability that the second round interview contains exactly
k people who were identified in the first round

Using the hypergeometric distribution, it is seen that
(%) (%)
k r—k
) = - :
r

In this example, we have n; = v = 1000 and k = 100. Ifn = 1900, substituting
these numbers into the expression above, we get

gk (TL

100012 _
qioo(n) = ( ( ) = 1040,

100119001

With a population size of 1900, it is virtually impossible that the same 100
people interviewed in the first round would be interviewed again during the
second round. For any given particular set of n1,r, and k, we may want to
find the value of n that mazimizes the probability q.(k) since for such an n,
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our observed data would have the greatest probability. This is the key idea of
the likelihood principle, and the value 7 is called the maximum likelihood
estimate. In other words, for a given set of data, the value 71 is among all
possible values of n which is most consistent with the given set of data in terms
of mazimizing the likelihood. To compute the mazimum likelihood, consider
the ratio
@) _ (r—m)n-r1)
ge(n—1) (n—n;—r+kn’

It can easily be seen that

qr(n) >1, if nk<mnyr,
ge(n—1) | <1, if nk>nr.

This means that when n increases, the sequence gx(n) first increases and then
decreases. It reaches its mazimum when n is the largest integer before the
number nir/k. Thus, i ~ nir/k. In this example, the mazimum likelihood
estimate of the population size 71 = 10, 000. O

Recall that if X1,..., X, are i.i.d. random variables with a common prob-
ability density function f(z,#), the likelihood equation is defined as

L(z,0) = H f(zs,8). (4.3)

The maximum likelihood estimate 6, of 6 is obtained by finding the value of
6 that maximizes (4.3). In other words, we would like to find the value of
the unknown parameter that maximizes the likelihood (probability) that it
happens for a given set of observations z1,...,z,. Notice that this is a very
general procedure and the i.i.d. assumption can be relaxed. For a time series
problem, this idea can still be applied and we shall illustrate this idea through
an example.

Consider an AR(1) model Y; = ¢Y;_1 + Z;, Z; ~ N(0,0?), i.i.d. The joint
probability density function (pdf) of (Zs,...,Z,) is given by

1 (n—1)/2 _1 n )
f(Zays ) = <27r02> exp ﬁzzi ’
t=2

where Yy = oY1 + 25,...,Y, = ¢Y,,_1 + Z,,. By means of the transformation
of variables method and the fact that the determinant of the Jacobian of this

transformation is 1, the joint pdf of Y>,...,Y, conditional on Y; is given by
1\ (/2
f(},Q""’Yn|Y1)=(27To'2) €Xp 2 22 ¢Yt 1

Recall that Y1 ~ N(0,0%/(1—¢?)) if Z3,Z_1,Z_,... are iid. N(0,02).

Since 2
f(Y) = (27:02> V1—¢2 exp [2 12(1_¢2)Y2]
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the likelihood function is given by

Lg) = f(n,....Yn)
= f(Ya...,.Ya | 1)f(N1)

= (A AR 2
o) P

n

Y (Y= ¢Ye1) + (1 - 1Y

}

where S(¢) = 31 ,(Y: — ¢Yi—1)? + (1 — ¢?)YZ. Therefore, the log-likelihood
function becomes

2ro? ~
1 n/2
= (2%02) \/1—¢2exp[ ]

A¢,0%) = logL(g)
1 1
—g log2m — %logcr2 t3 log(1 — ¢*) — %z-S(qS). (4.4)

For a given ¢, the log-likelihood function A can be maximized with respect
to o2 by setting OA/0a? = 0. Solving this equation leads to 62 = S(¢)/n.
Further, since

5(¢) = Su(¢) + (1 — ¢*)11?,

where S.(¢) = 31, (Y: —9Y;_1)?, for moderate to large n, the second term in
this expression is negligible with respect to S.(¢) and S(¢) = S.(¢). Hence for
a large sample size n, the value of ¢ that minimizes S(¢) and S.(¢) are similar,
and minimizing the unconditional sum of squares S(¢) over ¢ is tantamount
to minimizing the conditional sum of squares S.(¢).

Similarly, when maximizing the full log-likelihood A, the dominating factor
is 5(¢) for large n since 3 log(1 — ¢?) does not involve n, except in the case
when the minimizer occurs at ¢ near 1. This is another reason why precautions
need to be taken when dealing with a nonstationary or nearly nonstationary
AR(1) model (i.e., when ¢ = 1).

As a compromise between CLS and MLE, we find the estimator such that
S(¢) is minimized. This is known as the unconditional LSE. Starting with
the most precise method and continuing in decreasing order of precision, we
can summarize the various methods of estimating an AR(1) model as follows:

1. Exact likelihood method. Find ¢ such that A(¢, 0?) is maximized. This
is usually nonlinear and requires numerical routines.

2. Unconditional least squares.  Find ¢ such that S(¢) is minimized.
Again, nonlinearity dictates the use of numerical routines.

3. Conditional least squares. Find ¢ such that S.(¢) is minimized. This
is the simplest case since ¢ can be solved analytically.
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Notice that all three procedures are asymptotically equivalent. In general,
for an ARMA (p, q) model, we can use any one of these methods in a similar
manner. To find the unconditional least squares, we need to find ¢ such
that S(¢) is minimized. As in the case of CLS, the explicit form for such an
estimator is usually complicated for a general ARMA model.

Finally, similar to Theorem 4.1, there is also a central limit theorem for the
MLE ¢ of an ARMA(p, q) model. We refer readers to Brockwell and Davis
(1991) for a general statement about this result.

4.7 PARTIAL ACF

Recall that we can identify the order of an MA model by inspecting its
ACF. We now introduce a similar device to identify the order of an AR
model. For any given k > 1, let a collection of a stationary time series,
{Yi=k,Yi—k+41,...,Ys—1,Y;} be given. Consider predicting ¥; linearly based
on {Y;—k+1,...,Y:—1}. Denote this predictor by Y;. In a mathematical con-
text, this means projecting Y; linearly onto the space spanned by the random
variables {Y;_g¢1,--.,Y:i—1}; see, for example, Brockwell and Davis (1991)
for further discussions using the Hilbert space formualtion. In other words,
Y= PS_P{Yz—k-Hw-th—l}}/t' Then

Vi=B81Yio1+ -+ Be-1Yeks

and
Zy =Y —BYeo1 — = Br—1Yi—k+1-

Allowing time to travel backward, consider “predicting” Y;x linearly based
on {Y;—g+1,...,Yi—1}; we have

Viik =B1Yicks1 + -+ Br-1Ye1

and
Zik =Yk — B1Yeky1 — - — Br—1Yeo1.

The reason that the coefficients of these two predictions end up being identical
is a consequence of the stationarity of the time series. Since these coefficients
can be determined through the projection equation, which in turn depends
on the covariance structure of the time series, it can be shown that under the
stationarity assumption, the coefficients of these two predictions are exactly
the same.

_ Now, consider the correlation coefficient between these two sets of residuals,
Z and Z,_;,. This is defined as the partial autocorrelation coefficient (PACF)
of order k. It captures the relationship between Y; and Y:_; that is not
explained by the predictors Y;—g41,. .., Yz—1 (i.e., after regressing ¥; and Y; ¢
on the intermediate observations Y;_g41,...,Y;—1). The PACF is usually
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denoted by either a(k) or ¢gx. Note that ¢rr = corr (Zt_k,Zt) with ¢ =
p(1). Formally, we define

Definition 4.1 The PACF of a stationary time series is defined as

ou = p(l),
ok = cort (Yir1 — Py, vi} Yet1: Y1 — Py, v Y1), k22,

where Pgp(y,...v,}Y denotes the projection of the random variable Y onto the
closed linear subspace spanned by the random variables {Ya, ..., Y:}.

Example 4.4 Consider the simple case where we only have {Y1,Y,,Ya}. Then

Ys=p1Ys and Y =piYa.

Therefore,
$a2 = corr (Y3—p1Ya, Y1 — p;Y2)
_ cov (Y3 — ;Y2 Y1 — p1 1) (4.5)
[var (Y3 — p1Ya) var (Y; — p1Y2)|V/2° ‘
Now,
cov (Yz—p1Ye,Y1—p1Y2) = 72— pim— o+ pin
= o(pz — 20} + p})
= ~o(p2 ~ p})
and
var (Y3 —p1Ya) = var Y3 —2p; cov (Y3,Y2) + pf var Y;
= (Ll -2mp +p})
(1 —p?).
Substituting these back to (4.5), we obtain
2
P2— P
¢ = :
27152
As a conseguence, for an AR(1) model, px = ¢, 22 = 0. O

In general, for an AR(p) model, it can easily be seen that for n > p,
Vo = 1Y 1 + -+ + ¢pYn_p. On the other hand, Y1 = h(Ya,...,Yn_1) for
some function h. Thus, cov (Zn, Z1) = cov (Y, — V., Y — f/l) =cov {Z,,Y1 —
h(Ya,...,Y,_1)). Since {Y;} is an AR(p) process, the random variable Y, —
h(Ys,...,Y,_1) can be written as g(Z1, Z3, . .., Zn—1) for some function g. As
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Z, is uncorrelated with Z1,...,Z,_1, it is uncorrelated with g(Z,..., Z,),
and consequently,

~ ~

cov (Zn,Z1) = cov (Zp, Y1 —h(Ya,..., Yo 1))
cov (Zﬂvg(er cevy Z‘n))
0.

Hence, we have the following result.
Theorem 4.2 For an AR(p), éxx =0 for k > p.

In practice, we replace the p’s by r’s to calculate the sample PACF qgkk.
Equivalently, it can be shown that from the Yule-Walker equations, ¢r;, j=
1,...,k; k=1,2,.... can be obtained by solving the equations

p(0) p(1) -+ pk—1) Pr1 p(1)
p(1) p(0) plk — 2) | = :
o A0 Pk p(k)

Therefore, the PACF can be obtained by solving for the last coefficient in
the Yule-Walker equation. In particular, the sample PACF is obtained by
replacing the p(k)’s by the 74’s in the Yule-Walker equation. The proof of
this fact can be found in Brockwell and Davis (1991). Similar to the situation

of the sample ACF ry, there is also a central limit theorem for the PACF <}3kk.

Theorem 4.3 For an AR(p) model, /i ¢xi ~ AN(0,1) for k > p.

As a result, we can use the sample PACF, ¢y, to identify the order of an
AR model in the same way that we use the sample ACF, rg, to identify the
order of an MA model. It should be noted, however, that there is no clear
pattern for the sample PACF of an MA model.

4.8 ORDER SELECTIONS™

Although we can use the ACF and the PACF to determine the tentative
orders p and g, it seems more desirable to have a systematic order selection
criterion for a general ARMA model. There are two commonly used methods,
the FPE (final prediction error) and the AIC (Akaike’s information criterion).
Both methods are best illustrated through an AR model.

To consider the FPE, suppose that we are given a realization X = (X;, ...,
Xn) of an AR(p) model (p < n). Let Y = (¥1,...,Y,) be an independent

*Throughout this book, an asterisk indicates a technical section that may be browsed
casually without interrupting the flow of ideas.
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realization of the same process. Let 431,...,q3p be the MLE based on X.
Consider the one-step-ahead predictor of Y, 1 using these ¢’s, that is,

n+1 ¢1Y R QASpYn—p-H-
Then the MSE becomes

MSE = E(Yp41— Yny1)?

= EYnt1 —01Vn— = $pYn_pt1)?
= E( 1l — 1 Yn — = GpYn_pr1
. 2
~(1 = B)Ya == (6 — 6p)¥n-pi1)

= P +E (6= 8) Vari-iYari-),ca (b= 9)),  (46)
where&z((ﬁl,...,qu)’ and ¢ = (¢1,...,¢p).

Because X and Y are independent, the second term in equation (4.6) can
be written as the product of the expected values, so that

MSE = 0? + E((¢ — ¢)'Tp(¢ — 8)),

with T, = E(Y;Y;)?
fact, we have

7 j=1- Recall that n'/2(¢ — ¢) ~ AN(0, o2 > 1). Using this

‘/7% - $)T*T/ (¢ - ¢)@ ~ Xy

Hence,
2
MSE§a2+Q=02(1+£).

Further, if 62 is the MLE for o2, then né?/0? ~ x2_,. Replacing 2 by
né?/(n — p) in the expression a.bove we have

FPE = 62 (Z—fi) . (4.7)

Therefore, we would like to find a p such that the FPE is minimized.
Note that the right-hand side of (4.7) consists of two quantities: 62 and
(n+p)/(n —p). We can interpret this equation as follows: When p increases,
&2 decreases but the quantity (n +p)/(n —p) increases. Thus, minimizing the
FPE criterion aims at striking a compromise between these two quantities,
and the term (n+ p)/(n — p) plays the role of a penalty term when the model
complexity p is increased.

A second commonly used criterion is Akaike’s information criterion (AIC),
based on the Kullback-Leibler information index. Roughly speaking, this
index quantifies a metric between two competing models. The key idea is to
define an index and to select a model that minimizes this index.
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Given an ARMA(p, q) with realization {X1,..., X}, let B = (¢,0) and
&% be MLEs based on {Xj,..., X,}. Further, assume the X’s to be normally
distributed and let {Y3,...,Y,} be an independent realization of the same
process. Consider the likelihood (log-likelihood) function

L(g.e%) =

2ro?

n/2 n
1 Z
> =P |:- 20 t:l(Xt - ¢1Xt_1 —t 6‘1Zt—q)2 ’

-2 log L(B,6%) = mnlog2xn +nlogo? + S.(8)/0?,
-2 log Lo(B,6%) = nlog2m +nlogd? + S.(B)/6*
= nlog2m + nlogé? +n.

Hence,

—2log L,(8,8%) = nlog2r +nlogd? + 8,(B)/5*
—2log Lz(B,6%) + $,(B)/6* — n.

i

Taking expectations yields

E(_2 log Ly(ﬁ; 6’2))

E(-2log L.(B,6%)) + E(Sy(B)/6*) — n
E(Kullback—Leibler index).

To evaluate this expectation, we make use of the following facts. Their
proofs can be found in Brockwell and Davis (1991).

1.

7 05,8)

5.(8)= 5,0+ (3 - )220 Z5(5)

1.
E(ﬁ—ﬁ) 38 68 —L (B~ B).

Therefore,

E(S,(B)) 2 ES,(B) + o*E((B - BV~ (B - 9))

as
A —_ ~ -1 l S P 2
B—-8~AN(0,n V) and 398 08

E (—Sy(ﬁ)) = o2, we have 5B) _, 52,
n n

Further, since \/ﬁ(,é — B) has covariance matrix V, E(([i -B)YV-YB -
B)) = p + ¢q. Combining all these facts, we have

E(8y(B)) 2 o*(n +p+q).

V-l

Since
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2. Since n 6% = S,(B8) ~ 0?x?,,_,_,, Which is independent of 3,

d
((58)-

3. Therefore, the K-L index can be approximated by

¥ TEer (because X is independent of Y)

a*(n+p+q)
olln—p—q—2)/n’

B)
Sy(ﬂ)> . E(5,(8)
5-2

1%

n[(n+p+q)/(n—p—q-2)-1]

= 2n(p+q+1)/(n—p-q—-2).

—2log L(B,6%) + Aprar _ poc
n—-p—¢q

[i.e., E(AICC(B)) = E(K-L index)).

Formally, we have the following definition for Akaike’s information criterion
corrected (AICC) and Akaike’s information criterion (AIC).

Definition 4.2

noo(e) = —2logLs (9,20 LHELILIL -y
AIC(B) = -—2logL, (6, §'_zn£)_) +2(p+q+1). (4.9)

To use these criteria, fit models with orders p and ¢ such that either AICC
or AIC is minimized. Since we never know the true order for sure, in using
AIC we should not choose a model based on the minimal value of AIC solely.
Within a class of competing models, a minimum value of p + C may still be
legitimate when other factors, such as parsimony and whiteness of residuals,
are taken into consideration.

Another commonly used order selection criterion is the Bayesian informa-
tion criterion (BIC). It attempts to correct the overfitting nature of the AIC.
For a given ARMA(p, q) series {X.}, it is defined as follows.

Definition 4.3
BIC(B) = (n—p-—q)logng®/(n—p— q)}+n(l+logv2r)

+ (p+q)log [(Z X} - nJ?)/(p +4q)

=1

, (4.10)

where &2 is the mazimum likelihood estimate of the white noise sequence.



4.9

MODEL BUILDING 53

RESIDUAL ANALYSIS

After a model has been fitted, the next step to check the model is to perform
a residual analysis. Specifically, let the residuals be denoted by Z, =Y, - Y.
Then perform the following steps:

1.
2.

Make a time series plot of Z.
Plot the ACF of Z,.

Under the null hypothesis that Z; ~ WN(0, 1), it can be shown that
the r; (of Z;) ~ N(0,1/n). As a rule of thumb, one can use £2//n
to determine if the observed r; is significantly different from zero. But
remember that only short lags of r; are meaningful.

Instead of looking at the r;’s individually, consider the quantity

n(n+2)  5( (4.11)

j=1

where #z(j) is the sample correlation of Z; at lag j. This is known as
Portmanteau statistics. It pools together the information of r;’s for
several lags. To use Portmanteau statistics, we need the following result
regarding its asymptotic distribution when the Z; are white noise.

Theorem 4.4 Let {Z;} ~ WN(0,1) and Q be the Portmanteau statistic
defined in (4.11). Then Q—»x%n_p_q) as n — oo.

(i) In practice, b is chosen between 15 and 30.
(ii) This procedure needs large n, say n > 100.

(iii) The power of this statistic can be poor.

4.10 MODEL BUILDING

Model building can be classified into three stages:

1.
2.

Model specification (choosing ARIMA)

Model identification (estimation)

3. Model checking (diagnostic)

Corresponding to each of these stages, we have the following procedures.

1.

ARIMA, trend + seasonality, and so on.
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2. LSE, CLSE, MLE, and so on.
3. Residual analysis, Portmanteau statistics, and so on.

After step 3, remodel the data and return to step 1. This recursion may
have to be repeated several times successively before a satisfactory model is
attained.

4.11 EXERCISES

1. Consider the conditional least squares procedure for an MA(1) model
with Zp =0,
Y, =2 -02Z; .. (4.12)

(a) For a given initial value 6, express the conditional sum of squares
S.(8) =5 Z%(f) in terms of Y.

(b) Perform a Gauss-Newton search to find the value of # that min-
imizes S.(6). Using equation (4.2), demonstrate how you would
proceed to solve for 6, analytically in the first iteration. To solve
this, you may assume that the values of dZ;(6)/dd are known, for
the time being.

(c) Using the defining equation (4.12) of the MA(1) model, show how
to compute the derivatives of dZ;(6)/df recursively.

(d) Once you obtained 61, you can repeat the steps above to get a new
5 in the same manner and repeat the procedure until it converges.
This is the spirit of the Gauss—Newton search.

2. Consider an AR(1) model
Y, = oY1 + Zi, 2 ~ N(0,0%),i.id.

(a) Verify that the log-likelihood function A(¢, 02) is given by equation

(4.4).
(b) Derive that the maximum likelihood estimates of ¢ and o? are
given by X
= S(¢)/n,
where

S - Y1) + (1 - YL,

t=2

and g?) is the value of ¢ that minimizes the function

i(¢) = —log(n"'S(¢)) — n™"' log(1 — ¢%).
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3. For an AR(1) process the sample autocorrelation p(1) is
AN(¢, (1 —¢%)/n). Show that /n (p(1) - ¢)/(1 - p*(1))"/* is AN(0, 1).
If a sample of size 100 from an AR(1) process gives j(1) = 0.638, con-
struct a 95% confidence interval for ¢. Are the data consistent with the
hypothesis that ¢ = 0.77

4. Consider the AR(2) process {Y;} satisfying
Y, — Y1 — Y2 = Zy,
where {Z;} ~ WN(0, 0?).

{(a) For what value of ¢ is this a causal process?

(b) The following sample moments were computed after observing
Y1,...,Ya00:

4(0) =6.06, p(1) =0.687, /(2) = 0.610.

Find estimates of ¢ and 2 by solving the Yule-Walker equations.
If you find more than one solution, choose the one that is causal.

5. Let {Y;} be an ARMA(1,1) time series satisfying
Yi=¢Yi1+2:— 024,
where {Z;} ~ WN(0, 0?).

(a) Solve for v(0) and ¥(1) in terms of ¢ and 6.
(b) It is given that the MLE

(3) ()

satisfies the following theorem:

(5)~m((5) %),

where

p-1o 190 ( (1 - ¢%)(1 — ¢6) —(1—02)(1—452))
(6-02\ —-(1-6)(1-4¢°) (1-6°)1-9¢0) J

Instead of an ARMA(1,1) model, assume that the data are actually
generated from an AR(1) model Y; = ¢Y;_; + Z;. It is known in
this case that the MLE ¢ ~ AN(¢, (62/n)(1 — ¢?)). Explain what

happens to the standard error of the MLE ¢ if we overfit the AR(1)
model by the ARMA(1,1) model.
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6. Consider an MA(1) model satistfying
Yi=2;-0Z;_,,
where {Z;} ~ WN(0,1). It is given that the ACF of {Y;} is given by
y(0)=(1+6%), ~(1)=-68, ~(k)=0 for|k|>1.
Suppose that we have three data points Y7,Y5, and Ys.

(a) Find the coefficient b so that the estimator Y3 = bY; of Y3 minimizes
E(Y; — Y3)2 = E(Y; — bY,)2.

(b) Similarly, with the value of b given in part (a), let ¥; = bY; be an
estimator of ;. Evaluate

cov(Ys — Ys, Y1 — Y1).
(c) Hence, deduce that the partial ACF at lag 2 for {Y;} is given by

02

i

(d) Show that for the MA(1) model {Y;},

6% (1 - 6?)
Ork = ~ 1= gy for k > 2.
7. Let {Z;} beii.d. N(0,1) random variables. We generate three time series
according to models (a), (b), and (c) as follows:

(a) }/t = 085}/75_1 + Zt - 0.7Zt_1.
(b) Y; = Z, +0.7Z;_,.
(c) Y =1.5Y;_, — 0.75Y;_3 + Zi.

In Figure 4.1, the first plot in the first column is the time series plot of
the series (a), the second plot in the first column is the time series plot
of the series (b), and the third plot in the first column is the time series
plot of the series (c). The second and third columns of Figure 4.1 are
the ACF and PACF of either series (a), (b), or (c). Note that within
the same row, the second and third columns of Figure 4.1 are the ACF
and PACF of the same series. Match series r1- 73 with series (a)—(c).
Explain your answer briefly.
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Examples in seLus and rR

5.1 INTRODUCTION

Ideas from previous chapters are illustrated through two examples in this
chapter. These examples are analyzed in detail using SPLUS /R programs.
Some of the subtle points of SPLUS /R programs are also indicated in these
examples.

5.2 EXAMPLE 1

This is an example of the yield of short-term government securities for 21
years for a country in Europe in a period in the 1950s and 1960s. The data
are stored in the file yields.dat on the Web page for this book. Several
observations can be made about this series.

>yield.ts<-scan(’yields.dat’)
>ts.plot(yield.ts)

>acf (yield.ts)
>acf(yield.ts,30,type=’partial’)

There is an upward trend in the data, but there is not much seasonality. From
Figure 5.1 we see that the data are clearly nonstationary. This phenomenon
is quite common for financial series. Therefore, we should first difference the

59
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Series : yield ts
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Fig. 5.1 Time series and ACF for the yield data.

data as W; = (1— B)Y;. The plot of the differenced data and its corresponding
ACF and PACF are given in Figure 5.2.

>w<-diff (yield.ts)
>ts.plot (w)

>acf (w)
>acf(w,30,type="partial’)

Since there is a lag-one correlation in the ACF from Figure 5.2 that is different
from zero, we may attempt an ARIMA(0,1,1) model for the original data, that
is, fit an MA(1) for W; as

(1-B)Y,=2,-0Z,_;. (5.1)

>w.1<-arima.mle{(w,model=1ist (order=c(0,0,1)))
>w.1$model$ma

[1] -0.4295783

>arima.diag(w.1)

In the case of R, replace the commands “arima.mle” and “arima.diag” in
SPLUS by the commands “arima” and “tsdiag” in R, respectively, that is,

w.1<-arima(w,order=c(0,0,1) ,method="ML")
tsdiag(w.1)

This is also equivalent to fitting an ARIMA(0,1,1) to the demeaned series
Y; — E(Y:). One could have executed the command in SPLUS
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Fig. 5.2 Time series and ACF for the differenced yield data.

w.2<-arima.mle(yield.ts-mean(yield.ts) ,model=list(order=c(0,1,1)))
orin R
w.2<-arima(yield.ts-mean(yield.ts),order=c(0,1,1))

and obtain the same result. Note that SPLUS reverses the sign of § and gives
an estimate § = —0.43. Therefore, the fitted equation becomes (1-BY, =
Zy + 0.43Z;_,. The last panel of Figure 5.2 gives the diagnostic plot of the
fitted residuals. A simple ARIMA(0,1,1) model works reasonably well. This
is a typical example for financial data, as most of them fit quite well with the
random walk hypothesis (recall the discussion following Example 3.6). We
can also perform simple forecasts with (5.1):

Voi1=Yn+ Zny1 +0.432,,. (5.2)
Since Z, .1 is unknown, we let Zn+1 as E(Z,+1) =0, so that
Yog1 =Yy + 0432,

To complete the computation of Y’n+1 from this equation, we need to specify
Zn. This can be computed recursively as follows. Let the series {Y1,...,Y,}
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Series : accdeaths
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Fig. 5.3 Time series plots, ACF, and PACF of accdeaths.

be given and let Yy = Zy = 0. Then according to (5.2),

Z, = Y1 -Y;—-043Z, =Y,
Zo = Y,-Y, —043Z,,
Zs = Y;—Yy—0.432,
Zn = Y,—Yu_1—043Z,_1.

After obtaining Zn in this manner, we can subsitute this value into (5.2) to
obtain Y, ;.

5.3 EXAMPLE 2

This is an example concerning the number of accidental deaths on U.S. high-
ways between 1973 and 1978. The data are stored in the file accdeaths.dat
on the Web page for this book. Here is an illustration of the SPLUS commands
that can be used to analyze this series: :

>accdeaths<-scan(’accdeaths.dat’)
>ts.plot (accdeaths)
>acf (accdeaths,30)
>acf (accdeaths, 30, type=’partial’)

By inspecting the ACF in Figure 5.3, a clear seasonal pattern is detected
at lags 12, 24, 36, and so on. This is kind of intuitive, due to the high
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Fig. 5.4 Time series, ACF, and PACF of differenced data.

traffic during summer months. Note that we have a choice here; we can either
do a seasonal smoothing as discussed in Chapter 1, or perform a seasonal
differencing to account for the yearly effect. We choose the latter approach
and perform a seasonal differencing at 12 lags for the data.

>dacc <- diff(accdeaths,12)
>ts.plot(dacc)

>acf (dacc)

>acf (dacc,30,type=’partial’)

By inspecting the ACF of dacc in Figure 5.4, significant correlations up to
lag 6 are detected. This leads to further differencing.

>ddacc <- diff(dacc)
>ts.plot (ddacc)

>acf (ddacc)

>acf (ddacc,30,type="partial’)

Significant values of the ACF are detected at lags 1 and 12 in Figure 5.5
for ddacc, indicating a possible MA(1) x MA(12) model. Now entertain a
SARIMA model with this preliminary information. We begin by fitting a
SARIMA(0,0,1) x (0,0,1);2 model to the demeaned series in SPLUS .
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Series : ddacc

Time in months

Series : ddacc

Fig. 55 Time series, ACF, and PACF of twice differenced data.

>ddacc.1 <- arima.mle (ddacc-mean (ddacc), model = list
+(list(order = ¢ (0, 0, 1)), list(order = c(0, 0, 1),

+ period =12)))

>ddacc.1 $model[[1]]$ ma

> 0.4884 (This is the MA parameter for the MA(1) part)
>ddacc.1 $model[[2]]$ ma

> 0.56863 (This is the MA(12) parameter for the MA(12) part)
>ddacc.1$aic

> 852.73

In the case of R, these commands become

> ddacc.1<-arima(ddacc-mean(ddacc) ,order=c(0,0,1),
+ seasonal=list(order=c(0,0,1),period=12))
> ddacc.1$coef[1]
mal
-0.4962597 (This is the MA parameter for the MA(1) part)
> ddacc.1$coef [2]
smal
-0.6145993 (This is the MA(12) parameter for the MA(12) part)
> ddacc.18$aic
[1] 856.5324

Here, MA coefficients differ in sign from those of SPLUS , since different defi-
nitions of ARMA models are used.
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Essentially, what we have done is

W, = (1-B)(1-B?)X,,

Vi = W,-W, W =288,

V. = (1-6B)(1-0B"%)Z,

W, = 2883+ (1-0.488B)(1 - 0.5853B'%)Z,.

In other words, the model attempted so far is
(1- B)(1 - B'?)X, = 28.83 + (1 — 0.488B)(1 — 0.5853B'%)Z,

with an AIC value 852.73. If we want to get the standardized residuals,
ACF plots, and p-values of Portmanteau statistics for various lags, use the
command in SPLUS

>arima.diag(ddacc.1)
and the command in R
>tsdiag(ddacc.1)

to generate Figure 5.6. Alternatively, try to fit an MA(13) to W; — W, and
we should expect a large number of coefficients to be zeros. To do this, we
proceed in SPLUS as follows:

>ddacc.2 <- arima.mle(ddacc-mean(ddacc),model=list
+(order=c(0,0,13)))
>ddacc.2$model$ma

This command gives the estimated values of all 13 MA parameters:

0.5 -0.025 0.067 008 -0.13 0.19
0.16 0.012 -0.11 -0.03 -0.09 0.611
-0.4

In the case of R, we use the following commands

> ddacc.2<-arima(ddacc-mean{ddacc) ,order=c(0,0,13))
> ddacc.28model$theta

We conduct the following command in SPLUS
>a <- ddacc.2$model$ma/(2*sqrt (diag(ddacc.2$var.coef)))

and the command in R
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ARIMA Model Diagnostics: ddacc - mean({ddacc)
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Fig. 5.6 Diagnostics and Portmanteau statistics for ddacc.1.

>a<-ddacc.2$model$theta/ (2*sqrt(diag(ddacc.2$var.coef))[1:13])

The object a consists of the two-standard-deviation ratios §;/28; for j =
1,...,13. Hence, if a particular entry of a is bigger than 1 in magnitude,
it would indicate that the particular coeficient is significantly different from
zero. The values of a are given as follows:

217 -011 0.30 0.38 -—-0.56 0.83
0.73 0.05 -0.50 -0.12 -0.43 2.73
-1.65

Here, we observe 81, 612, 813, and possibly g to be significantly different from
zero. Refit the data by specifying 6,, 612,013 to be the only nonzero values.
We use the command in SPLUS

>ddacc.3 <- arima.mle(ddacc-mean(ddacc),model=list

+ (order=c(0,0,13) ,ma.opt=c(T,F,F,F,F,F,F,F,F,F,F,T,T)))
>ddacc.3$model$ma

>arima.diag(ddacc.3)

and the command in R

> ddacc.3<-arima(ddacc-mean{(ddacc) ,order=c(0,0,13),
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Fig. 5.7 Diagnostics and Portmanteau statistics for ddacc. 3.

+ fixed=c(NA,0,0,0,0,NA,0,0,0,0,0,NA,NA,NA))
> ddacc.3$model$theta
>tsdiag(ddacc.3)

67

The estimated values are §; = 0.46, 6,2 = 0.63, 8;3 = —0.22, with ¢ = 3.
The AIC value is AIC = 854.47 = —2log L(5%)+2(p+gq+1), where p = 0 and
q = 13. Therefore, —2log L(6?) = 854.47 — 28, which implies that the correct
AIC should be equal to 854.47 — 28 + 8 = 834.47, since there are only three
independent parameters and the correct ¢ = 3. The p-values of Portmanteau
statistics for this particular model seem to be quite poor (see Figure 5.7). As
a further attempt, we try a model by including a possible nonzero 5. We use

the command in SPLUS

>ddacc.4 <- arima.mle(ddacc-mean(ddacc) ,model=1ist(order=

+c(0,0,13), ma.opt=C(T,F,F,F,F,T,F,F,F,F,F,T,T)))
>ddacc.48$model$ma

>0.60 ... 0.41 ... 0.67, -0.47

> AIC = 869.85

and the command in R

ddacc.4<-arima(ddacc-mean(ddacc),order=c(0,0,13),
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ARIMA Model Diagnostics: ddacc - mean(ddacc)
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Fig. 5.8 Diagnostics and Portmanteau statistics for ddacc.4.

fixed=c(NA,0,0,0,0,NA,0,0,0,0,0,NA,NA,NA))
ddacc.4$model$theta
tsdiag(ddacc.4)

This time, ¢ = 4 instead of 3, giving a revised AIC value as 869.85 — 18 =
851.85. The diagnostic statistics in Figure 5.8 becomes more reasonable this
time. The overall model is then

(1-B)(1-B'?)X, = 28.83+(1-0.608 B—0.411B°—0.677B'?+0.473B'%) Z,.

To perform a forecast, one can use SPLUS with the preceding fitted model as
follows:

>ddacc.fore <- arima.forecast(ddacc-mean(ddacc),

+ n=6,model=ddacc.4$model)

>ddacc.fore$mean <- ddacc.fore$mean + mean(ddacc)

>67.771946 218.134433 -163.567978 9.058976 108.256377 62.774339

In the case of R, the command becomes

ddacc.fore<-predict(ddacc.4,6)
ddacc.fore$pred<-ddacc.fore$pred+mean(ddacc)

The preceding command forecasts the mean values of the series W, for
t = 73,...,78. However, since we are interested in the values of X;, we have
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Table 5.1 Forecasted and Actual Values of X;,t =73,...,78

t 73 74 75 76 77 78

Forecasted values Xt 8348 7622 8357 8767 9798 10,180
Observed values X; 7798 7406 8363 8460 9217 9316

to undifference the forecasted values W, to get the values of X; back. Thus,
fort=73,...,78,

Xt = Wt + Xt—l + Xt—12 - Xt—13~

This gives the forecasted values listed in Table 5.1.

5.4 EXERCISES

1. Reload the airline sales data in Exercise 3 of Chapter 1, which are listed
on the Web page for this book under the file airline.dat.

(a) Perform a time series analysis on the airline data set.

(b) Forecast the next 12 values from the end of the data set with cor-
responding 95% forecasting intervals. You should also plot out the
graph of the forecasts.

2. Perform a time series analysis on the weekly exchange rate between
the U.S. dollar and the pound sterling for the years 1980-1988. This
data set can be found on the Web page for this book under the file
exchange.dat. Use the examples presented in this chapter as outlines
to conduct your analysis.
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Forecasting

6.1 INTRODUCTION

Having observed a time series {Y1,...,Y,}, we are usually interested in fore-
casting a future value Y,yn. It will be useful to distinguish between two
types of forecast, the ex post and ex ante forecasts. The ex post forecasts
observations when the “future” observations are known for certain during
the forecasting period. It is used as a means to check against known data so
that the forecasting model can be evaluated. On the other hand, the ex ante
forecasts observations beyond the present, and in this case, the future obser-
vations are not available for checking. Suppose that we observe {Yi,...,Y,};
we may use {Yi,...,Yr} (T < n) to estimate a model and use the estimated
model to forecast Yr1,...,Y,. These are ex post forecasts since we can use
them to compare against the observed Yr,i,...,Y,. The estimation period
in this case is T. On the other hand, when we forecast Y, +1,..., Y,y for
h > 0, we are doing ex ante forecasts. After fitting a model, we estimate a
future value Y,1n at time n by f’n(h) based on the fitted model, while the
actual value of ¥, is unknown. The forecast is h steps ahead; h is known
as the lead time or horizon. In practice, there are different ways to perform
forecasts and we discuss several of these methods in the following sections.
We begin by introducing three important quantities. The first is the forecast
function Yy (k), which is also denoted by Y (n, k), Yp4p or Y ;. Formally, it
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is defined as

Yn+h = E(Yn+h|Yna .. )
= Ps‘p{Yn,...}Yn—{—h
= PnYn+h
Yoihe (6.1)

Note that this is the conditional mean of Y, . given the history. It can be
shown that this is the best estimator in terms of the mean square error (see
Exercise 1). The second quantity is the corresponding forecast error, which is
defined as

en(h) = Yoth — Yoin (6.2)

while the third is the variance of this error given by
Prin = El(Yasn — Yiun)?[Ya, . . (6.3)

Again, this variance is simply the conditional variance of the forecast error
based on the history of the data.

6.2 SIMPLE FORECASTS

If the underlying time series has a simple trend such as those discussed in
Chapter 1, Y,, can be forecasted by means of simple extrapolation. This is
most useful when long-term forecasting is desired, where it is unlikely to be
worthwhile to fit a complicated model. Specifically, consider Y,, = m, + X,
the signal plus noise model. Suppose m, is constant, so that the series is
stationary. Then

1?+h = PyYnih = Minyp = Mip, (6.4)

where the last quantity, 7,, can be estimated by exponential smoothing.
To conduct exponential smoothing, recall from Chapter 1 that the estimated
trend at time 7. is expressed as a convex combination of the current observation
and the previous estimate as

g1 = aYigr + (1 — )i
= oY1 + (1 - a)mt+1
= oY1+ (1 —a)m: [using (6.4)], t=1,...,n,

with #2; = Y;. By iterating this recursion, it can be seen easily that the
current estimated value m,, is simply a weighted average of the data:

t—2
=Y a(l-a)Y;+(1-a)" 1.
=0
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When the trend is not constant, one simple generalization of the forecast
function is
P.Y,in =é,+bnh,

where a, and b, designate the level and the slope of the trend function at
time n. A simple generalization of the exponential smoothing, known as the
Holt-Winters algorithm, can be derived to account for such a situation. To
illustrate this idea, first forecast the level a,+1 by exponentially smoothing
the current value and the last forecasted value as

dip1 = aYi+(1-a)¥ip
= aYt+1+(1—a)(&t+IA)t) fort=2,...,n

For the slope, first consider
Y, = PYoya = dn + bn2.
On the other hand, when Y, is available, we can compute
YL = Poy1Yosz = Gngr + bng1

Since both Y, and Y" +1 are estimating the same future value Y, o, it is
reasonable to expect them to be close. By equating these two quantities, we
see that byt ~ @p —Gny1 + 2b This idea motivates writing b;41 as a convex
combination of ¢+, — G; and bt as

BH—I = ﬂ(&t+1 - &t) + (1 — ,B)i)t fort = 2, Loy

By combining the recursions for the estimated levels and slopes and fixing the
initial conditions a9 = Y3 and b2 =Y, -Y1, G, and b can be computed so
that forecast of Y, ; can be obtained. Similar to exponential smoothing, the
values o and 3 are chosen such that the sum of squares of the prediction error
pRN e? is minimized. In practice, & and 3 are found to be lying between 0.1
and 0.3. Further generalization of the Holt and Winters method for seasonal
trends can be found in Kendall and Ord {1990).

6.3 BOX AND JENKINS APPROACH

This procedure amounts to fitting an ARIMA model and using it for forecast-
ing purposes. It is discussed in detail in Abraham and Ledolter (1983). Let
Y; follow a causal and invertible ARMA(p, g) model ¢(B)Y; = 6(B)Z;. Then
Y: = Ef:o ¥ Zy_i, Yo = 1. Consider the following conditional expectations:

s<n,

EY|Yn,...) = { Ys': s§>n.
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Zs, s<mn,
A

The last equation follows from the fact that Y, = E?:o V; Zn_i, SO that
E(Z4|Yn,...) = E(Zs|Zy,...). Furthermore, since the forecast function satis-
fies

Vrh = E(YainYn, ) = 3 GiB(ZnsnilYn, ) = Y $iZnsns,
i=0 i=h

it follows that the forecast error becomes

h—1
en(h) =Ynih = Yin = > $iZnyn_s.

=0

In particular, the forecast error variance is given by
h—1
2
P =Elen(h)?|Yn,..) =022 Y o’
i=0

Therefore, as long as the forecast errors (innovations) are normally distributed,
a {1 — a) probability interval for the forecast values can be constructed as

Yoih £ zagor/ Prins

where z,, denotes the ath percentile of a standard normal random variable.

Example 6.1 Suppose that the following SARIMA(1,0,0) x (0,1,1)12 has
been fitted to o data set:

Yo=Y 12+ ¢(Yno1 —Yn_13) + Zn — 02,12 (6.5)
Since E(Zp+1|Yn,...) =0, we have
Yo, = E(Ynn |Ya,Yoo1,...)

Yoo11+¢(Yn — Yn_12) ~ 0Zn-11.
Therefore,
Yoo = E(Ya4o|Yn,Yao1,...)
E(Yn-10+ ¢(Ynr1 = Yo 11) + Zny2 — 0Zn10|Yn,...)
Yn—lo + ¢(Ynn+1 - n—ll) - 9Zn—10' (66)
This procedure can be continued recursively. For example, if Yo 11 is avail-
able, by virtue of (6.6),
Yo = Yoo+ ¢(Yat1 = Yaon1) —0Za_10
= Yoo+ (Y1 — Yno11) = 0210 — dY41 + 9Ynqa
= Yt ¢(Ya —Yoi)
= Y??'_{_? + ¢Zn+l- O
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Fig. 6.1 Time series plots, ACF of T-bills, and log(T-bills).

For a general ARMA(p, ¢) model, similar equations can be used to calcu-
late the values of the forecast. Again, approximations for the values of Z,
appearing in the forecasts are computed recursively forn = p+1,p+2,... by
solving for Z, in the ARMA equation and by making the assumptions that
Zy =0forn<p.

6.4 TREASURY BILL EXAMPLE

Consider the series that consists of the monthly interest rate on three-month
government Treasury bills from the beginning of 1950 through June 1988. The
Web site at the Federal Reserve Bank at St. Louis,

http://www.stls.frb.org/fred/data/business.html

contains many interesting long-term bond yield data. This data set is stored
under the file ustbill.dat on the Web page for this book. The time series
plot, the ACF, and the log-transformed series are given in Figure 6.1.

It is clear from the plots that the data are nonstationary in both mean and
variance. As a first attempt, consider the difference in the logs of the data;
call this series “dlntbill” and designate it as X;. From Figure 6.2, both ACF
and PACF show that there are strong correlations at lags 1, 6, and perhaps
17. Since the lag 17 correlation is only marginally significant, which may be
caused by a number of factors (nonstationary variance, e.g.), we start with
an AR(6) model, then an MA(6) model, and finally, an ARMA(6,6) model
for dintbill. In terms of the diagnostics and the AIC values, both ARMA(6,6)
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Fig. 6.2 Time series plots, ACF, and PACF of X;.

and MA(6) compare less favorably than the AR(6). The diagnostic plots of
the residuals of the fitted AR(6) model are given in Figure 6.3.

Consequently, we choose the AR(6) model as the fitted model and attempt
to forecast the future values based on it. In summary, the fitted model is

¢(B)Yt = Zt,

where Y; = W; — W, W, = (1 — B)X;, X; = log(tbill) at month ¢, and
¢(B) =1+0.458 —0.2B? 4+ 0.09B8% +0.04B* — 0.01B% — 0.21B®. The SPLUS
program for this analysis follows.

tsplot (ttbill)

acf(ttbill)

tsplot (log(ttbill))

acf (log(ttbill))

dlntbill<-diff (log(ttbill))

tsplot(dlntbill)

acf (dlntbill)

acf (dlntbill, 30, ’partial’)
d3<-arima.mle(dlntbill-mean(dlntbill) ,model=list
(order=c(6,0,0)))

d3$model$ar

[1] 0.44676167 -0.19584331 0.09226429 0.04264963 -0.01214136
-0.20785506

> d3%aic

[1] -1027.108

+ VV V V V VYV VYV

v
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ARIMA Model Diagnostics: dintbill - mean(dintbiil)
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Fig. 6.3 Diagnostic plots of the fitted residuals from the AR(6) model.

> arima.diag(d3)

> d3fore<-arima.forecast(dlntbill-mean(dlntbill),n=6,

+ model=d3$model)

> d3fore

$mean:

[1] 0.017246377 -0.015810111 -0.023524633 0.005293435
0.022376072

[6] 0.003773632

d33<-exp(d3fore$mean + mean{dlntbill))

tfore<-c(0,0,0,0,0,0)

tfore[1])<-ttbill [456]*d33[1]

for (i in 2:6)9{

tforel[il<-tfore[i-1]*d33[il}

> tfore

[1] 5.892155 5.821250 5.707001 5.758577 5.910733 5.955093

> tsplot (ttbill[457:462],tfore)

> leg.names<-c(’Actual’,’Forecast’)

> legend(locator(l),leg.names,lty=c(1,2))

+ V V VvV

In the case of R, the program becomes

> ttbill<-read.table("ustbill.dat")
> ttbill<-as.matrix(ttbill)
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ttbill<-ttbilll[,-1]
ttbill<-as.vector(t(ttbill))
plot.ts(ttbill)

acf (ttbill)

plot.ts(log(ttbill))

acf(log(ttbill))

dlntbill<-diff (log(ttbill))
plot.ts(dlntbill)

acf(dlntbill)

acf(dlntbill,30,"partial”)
d3<-arima(dlntbill-mean(dlntbill),order=c(6,0,0))
tsdiag(d3)

d3fore<-predict(d3,n.ahead=6)
d33<-exp(d3fore$pred+mean(dlntbill))
tfore<-¢(0,0,0,0,0,0)
tfore{1]<-ttbill[456]*d33[1]

for(i in 2:6){
tfore{i]<-tfore[i-1]*d33[i]}

tfore

[1] 5.820030 5.896966 5.960716 5.957511 5.899653 5.864232
> ttbill<-as.ts(ttbill)

tfore<-as.ts(tfore)
ts.plot(ttbill[457:462] ,tfore,lty=c(1:2))
leg.names<-c("Actual","Forecast")
legend(locator(1),leg.names,lty=c(1:2))

V + VVVVVVVVVVVVVVVVYV

VvV V. V V

The forecasted and observed values for the first six months of 1988 are
given in Table 6.1. Note that the SPLUS program accomplishes the following
steps:

L. Fit an AR(6) to the series W; — _W_ and forecast the next six values from
this model as Y;yp, = Wiyp — W. Therefore, Wi p = Yign + W for
h=1,...,6.

2. Recover X, from W; as Xt+h = WH_h + XH—h—l = YHh +W+ Xt+h_1.

3. Recover T5illt+h = eXein = exp(Yien + W + Xirn-1).

As can be seen from Figure 6.4, the model forecasts the first three months
in 1988 reasonably well. However, when interest rates started hiking in April
1988, the fitted model did not have enough predictability to pick up this sharp
rise. This is one of the shortcomings of using an ARIMA model to forecast
a volatile financial series. Nevertheless, the overall trend of the forecasted
values still follows the series observed. We have only modeled the data set by
means of its own internal dynamics without taking account of any exogeneous
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Fig. 6.4 Plots of actual and forecasted values.

Table 6.1 Forecasted and Actual Rates of T-Bills in 1988

t Jan. Feb. Mar. Apr. May June

Forecasted rates 5.89 582 5.71 576 5.91 5.96
Observed rates 5.81 5.66 5.70 591 6.26 6.46

information in this example. There are other ways to model fixed-income
assets, commonly known as term-structure models, which have been studied
extensively in the finance literature. Further details can be found in Chapter
10 of Campbell, Lo, and MacKinlay (1997).

6.5 RECURSIONS*

Suppose that a zero mean stationary time series {Y1,...,Y,} is given. In
this section we mention two commonly used algorithms for calculating the
prediction of Y, +1. Let {Y;,...,Y,} be a zero mean stationary time series.
The first algorithm makes use of the Durbin-Levinson recursion and expresses

*Throughout this book, an asterisk indicates a technical section that may be browsed
casually without interrupting the flow of ideas.
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the one-step-ahead prediction of Y,,41 as the data, so that

n
Yn+1 = Yr?.q.l =PpYnt1 = Z¢njyn+1—j> (67)
Jj=1

where the coefficients ¢,; are determined via the Durbin-Levinson recursion,
and the last coefficient, ¢,n, is the PACF of the series. Note that this ex-
pression is to write the predictor in terms of a linear combination of the data
Yi,...,Y,. R

The second algorithm expresses Y41 as a linear combination of the one-

step-ahead prediction error (innovation) Y; — Yj, j=1,...,n, as
n
Yni1 = Z9nj(yn+1—j = Yat1-5), (6.8)
j=1

where the coefficients 6,; can be computed recursively by means of the in-
novation algorithm. This algorithm is particularly useful when we have an
ARMA(p, q) model so that 6,; are functions of the underlying parameters
¢,0. 1t is used to establish an on-line recursion to evaluate the likelihood
function for an ARMA(p, ¢) model. Further discussions about these methods
can be found in Chapter 5 of Brockwell and Davis (1991).

6.6 EXERCISES

1. Suppose we wish to find a prediction function g(X) that minimizes
MSE = E(Y — g(X))?,

where X and Y are jointly distributed random variables with a joint
density f(z,y). Show that the MSE is minimized by the choice

9(X) = E(Y[X).

2. Let X; be an ARMA(1,1) model
(1-¢B{(Xe —p) =2, —0Z,,.
(a) Derive a formula for forecast function X7, in terms of (¢,6) and
2.

(b) What would X7, , tend to as h tends to co? Can you interpret
this limit?

(c) Find the formula for var[e;(h)]. Again, interpret this formula as h
tends to co.
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3. Write a SPLUS program to perform a Holt-Winters prediction of the
accidental deaths series (ignoring the seasonal component) discussed in
Section 5.3 for t = 73,...,78. Compare your results with those given in
Table 5.1 and comment on the differences.

4. Without a logarithm, fit an ARIMA model to the original monthly Trea-
sury rates in Section 6.4 and compare your forecasted values with the
model given in the example.

5. Let {Y;} be a stationary time series with mean p. Show that
Ps‘p{l,Yl,..A,Yn}Yn+h =p+ Ps-p{xl,___,xn}Xn+h,

where X; = Y; — p.
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Spectral Analysis

7.1 INTRODUCTION

Although spectral analysis has many important applications in physical sci-
ences and engineering, its applications in the field of finance are still limited.
Nevertheless, given its historical background and applications in other disci-
plines, a basic understanding about its nature will be fruitful. In this chapter
we discuss briefly the idea of spectral analysis in time series. Further details
about spectral analysis can be found in the books by Bloomfield (2000),
Koopmans (1995), and Priestley (1981).

7.2 SPECTRAL REPRESENTATION THEOREMS

Most time series exhibit some periodic patterns that can roughly be repre-
sented by a sum of harmonics. To understand this type of approximation,
we introduce a few terms. The first one specifies the rate at which a se-
ries oscillates in terms of cycles, where a cycle is defined as a sine or cosine
wave defined over a time interval of extent 27. The oscillation rate w is the
frequency, which is defined as cycles per unit time. Sometimes, it is more
convenient to define frequency as radians per unit time A [1 radian = 1/(27)
of a cycle] and we have the relation

A = 2mw.

Finally, the period T of an oscillating series is defined as the length of time
required for one full cycle and can be expressed as the reciprocal of the fre-

83
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quency,
To=1/A

As an example, let B();) be a sequence of independent random variables
defined over a given sequence of frequencies —7 < A\ < -+ < Ay, < 7 in
radians per unit time. Consider the process defined by

)" B(2mw;) sin(2rw;t + ¢)
j=1

Y,

= > B();) sin(\jt +9)
i=1
D A)E,

IR

.
-

where the last approximation follows from Euler’s identity of complex num-
bers. The quantities A(\;),  =1,...,n, are random amplitudes that are as-
sumed to be independent random variables with E(A()\;)) = 0, var (A();)) =
012, j=1,...,n,and ¢ is a fixed phase shift among these harmonics. Such a
process {Y;} is stationary. To check this, first observe that EY; = 0. Further,
if we denote Y; as the complex conjugate of Y;, the covariance function of Y;
is given by

k) = EYixY:

E Z A(/\j)ei(t+k)>‘j Z A(/\[ )e—it/\t

j=1 =1

2 ik
aiet.

n
=1

J

Hence, the process {Y;} is stationary.
Define a function F(A) = Zj,)‘(,\ a;‘-’ for —w < A < «. Then F is a non-
A<

decreasing function and we can express (k) as a Riemann-Stieltjes integral
of F as

(k) = /_ " R G (). (7.1)

In particular, F(7) =Y, 012. =var Y;. F is called the spectral distribution
function of {Y;}. Furthermore, if F' is absolutely continuous, the function
f(A) = dF())/dX is known as the spectral density function of the {Y:}.

More generally, it can be shown that equation (7.1) holds for a wide class
of stationary processes. The next three theorems, usually known as spectral
representation theorems, are technical in nature. Since they are used pri-
marily in deriving theoretical properties, we shall just state these theorems
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without pursuing the details. Interested readers may find further discussions
in Priestley (1981).

The first theorem states that the covariance function of a stationary process
is related to the spectral distribution function through a Fourier transform.
This is sometimes known as the spectral representation theorem of the auto-
covariance function.

Theorem 7.1 «(-) is the ACF of a stationary process {Y;} iff

k) = | " e dR(y),

-7

where F is a right continuous, nondecreasing function on [~m, 7] with F(—m) =
0. Further, if F is such that F(y) = fjﬂ F(X) d), then f(-) is called the spectral
density function of {Y:}.

The second theorem relates the process {Y;} itself to another stationary
process {Z(\)} defined over the spectral domain. It is sometimes known as
the spectral representation theorem of the process.

Theorem 7.2 Every zero mean stationary process {Y;} can be written as

ni/éﬂﬂuy

-
where {Z(\)} is a stationary process of independent increments.

The third theorem relates the spectral density function to the autocovari-
ance function.

Theorem 7.3 An absolutely summable v(-) is the ACF of a stationary pro-
cess {Y:} iff it is even and the function f is defined as

oo

1

= 2—
g k=—o00

f(N) v(k)e™#** > 0

for all A\ € [—m, 7], in which case f is called the spectrum or spectral density
of ().
Remark. It is easy to see that such an f satisfies the following properties:
1. fiseven [ie, f(A) = f(=)N)].
2. (k) = [7_e**F(A) dr = [T _cos(kX)f(X) dX.
Example 7.1 LetY; = ¢Y:—1 + Z;, |¢| < 1, an AR(1) process. Recall that

p(k) = v(k)/7(0), where p(k) = ¢* and ¥(0) = 02 /(1 - ¢?). Now consider the
function
FA == Y Ak
k=—oc0
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In particular,

L = _1_ .- ik
M = 5 k;wp(k)e
— 2_1; (1 + Z¢ke—ikA +Z¢—keikk)
. 1kil¢2 k=1

= T 2geosat @ 20 fralAe(-mml.

According to Theorem 7.3, v(k) is the autocovariance function of a stationary
process {Y;}, which is the given AR(1) process. O

The graphs of f for different values of ¢ in this example are given in Figure
7.1.

Series; ar1.si Series; ar2.sim
__Smodthed Periodogram Smoothed Periodogram
A VAVA' =N
| L '.“. - f\\ / \\‘/
o~ ‘ \II II{ I'lll
§ o | Aa 2 Eo [
= TN N Iay = | | = f
. \ N [ N 7 .
g o “-. X § o / '.I / \/f
4 \ L o~ \ /
- [ phi=05 | ?, O\ . ._/-" phi=-05
00 01 02 03 04 05 "00 01 02 03 04 05

bandwidth= 0.0175594 . SEAUETCYs ( -2.95496 . 4 50582 ' bandwidth= 00175594 , SEY&1%%s ( -2.95496 . 4.50582 "

_Smm_ggj%%% F?e[%bséglg ram

e[\
\
o \
2!\
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o | .
N o
hi=0.9 ~—~—"\ /\ |
phi=0. \/ 1
.| = VAN
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bandwidth= 00175594 , SEAYE1Ys ( -2.95496 . 4 50582 °

Fig. 7.1 Spectrum for an AR(1) model with different ¢.
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For a general ARMA(p, ) process, its spectral density function is given by

2
0.2

T o

6(e™)
Ple=)

In particular, for the AR(1) case we have

f)

o? 1

T

where
(e = (1 - 9e™)(1 — ge™) =1 — 2pcos X + 67,

agreeing with Example 7.1. Since any “nice” function can be approximated
by a rational function, the result above implies that for any given stationary
process with a “nice” spectrum, it can be approximated by an ARMA process
through spectral consideration. This is one of the reasons why an ARMA
model is useful.

Example 7.2 As a second ezample, let {Y;} ~ WN(0,02). Recall that p(k) =

0 for k #0 and
2
o
f) = py Ve (—m, .

In other words, the spectrum f is flat for all frequencies, hence the term white
noise. O

7.3 PERIODOGRAM

In practice, since p(k) and ~(k) are unknown, we must resort to estimation

and construct
o0

f@) =5 3 alie.

k=—c0
However, evaluating f is difficult. Instead, consider the following function:

Definition 7.1 )

I(w) = % , (7.2)

n
§ :}/te—itw
t=1

known as the periodogram.

Note that the periodogram is just a truncated expression of f , as shown in
the following result.

Theorem 7.4 Let w; = 27j/n be a nonzero frequency. Then

Iwi) = Y A(k)e™™.

|k|<n
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Proof. According to Definition 7.1,

18 n
I(w]‘) . Z Yte—'ztwj }/teztqu .
n t=1 t=1

Recall the fact that }_, "7 =3}, e™®i =0 if w; #0.Letm= 37 |V
and m = 2 37 | ¥;. Then,

I(w;) = % }: Z(Yt - m)(Y, - m)éi(s_t)“’j
= Z :Y(k)e—ikwj' a

To speed up the calculation of I(w), we usually employ the fast Fourier
transform algorithm. Again, details on this method can be found in Priestley
(1981). Since the spectrum is estimated by I(w), one immediately questions:
Why would a periodogram be good? What property would I{w) possess for
a periodic series? Since a periodogram at a given Fourier frequency is the
Fourier coefficient for the expansion of the data vector Y = (Y7,...,Y,) in
terms of an orthonormal basis at that particular frequency, we expect the
periodogram to have a strong contribution (level is high) when the data have
a periodic component that is in sync with the given Fourier frequency. Specif-
ically, consider the following example.

Example 7.3 LetY; = a costf; 0 € (0,7) be fired and a, a random variable
such that E(a) = 0,var(a) = 1. For a fized w € [—m, 7], consider

Zthostw = thcoswcostw
= Z %[cos t(0 + w) + cost(d — w)].

Hence,
_ [ O(m) if 0=uw,
D _Yicostw = { 0(1) if 6 #w.
Equivalently,
_ [ O(n) ifb=uw,
I(w)—{O(l) if 6w o

In other words, for a given stationary series, use I(w) to estimate the
periodicity of the series. If the series is periodic, its periodogram attains a
large value at w = 6 and a small value otherwise. The periodogram of Example
5.2 reveals this feature in Figure 7.2.

>spectrum (accdeaths, spans=c(5,7))
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smebthed Peredogram

55

40

35

o 1 2 3 4 5 6
bandwidth= 0.363242 , S589YENY ( .2.68553 , 3.90889 )dB

Fig. 7.2 Spectrum of the accidental death data set.

This periodogram I(w) has a peak at % cycle. With a series of length
n = 72, this translates to a period of 12. The scale of the periodogram in
SpLUS /R is decibel, which is 10log,o /(w). The command spans=c(5,7) is
an input parameter from the user for smoothing the periodogram. One can
adjust the shape of the periodogram by tuning this parameter. Details of this
function can be found by typing help(spectrum).

7.4 SMOOTHING OF PERIODOGRAM™

Since In(wj) = n7| 30 Xee™™ 12, I, (w;)/2m would be an estimate of
f(w;). We now extend the definition of I, to the entire interval of [—m, 7).

Definition 7.2 For any w € |—n, 7], the periodogram is defined as

L(w) = In(we) fweg—m/n<w<wpg+n/nand 0 <w <,
T In(~w)  if w € [-m,0).

This definition shows that I, is an even function that coincides with the

original definition of periodogram at the nonnegative Fourier frequencies. For

*Throughout this book, an asterisk indicates a technical section that may be browsed
casually without interrupting the flow of ideas.
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w € [0,7], let g(n,w) be the multiple of 27/n that is closest to w, and let
9(n,w) = g(n, —w) for —r < w < 0. Then Definition 7.2 can be written as

In(w) = In(g9(n,w)) forallw € [—m,n]. (7.3)

Asymptotic properties of I,, can be deduced and they can be found in Brock-
well and Davis (1991). Since I,, is defined through some kind of interpolation,
its graph would be spiky. For a better interpretation, we may want to smooth
it. For example, consider the moving average version

1 1

2m ki< 2m+1

In(wjtk)-

This would be a smoothed estimate of f(w;) since it pools in the m nearby
frequencies of w;. In general, we consider a smoothed version of I,, as

f(wJ Z W (k) In(wj+x),
lk|<mn

where {m,} is a sequence of positive integers and {W,(-)} is a sequence of
weight functions such that:

1. m, = o(n).
2. Wa(k) =Wa(-k), Wy(k)>0.
3. Xikj<m, Wn(k) =1and 3., Wi(k) —0.

Similar to the earlier discussion, in general, we can define a discrete spectral
average estimator for any w € [—m, n] by

fw) = Fomw) (7.4
= 5 3 Walinlgn,w) + 26m/m), (75)
|k|<mn

where g(n,w) is the multiple of 2m/n that is closest to w. Here the sequence
{mn} is known as the bandwidth (bin width) and the functions W,, are weight
functions.

Under certain regularity conditions for a stationary linear process Y; =
E?io ¥;Zs_j, it can be shown that the smoothed estimate f has the following
asymptotic properties:

1.

! ) X 2f%(w) w=A=0orm,
lim Z W2(35) cov(f(w), fA) =< fiw) O<w=A<m,
e 0 w# A
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This result indicates that there is a compromise between bias and variance
of the spectral estimator. When m,, is large, the term Y W2(k) — 0, which
implies that the variance of f is small. The periodogram is smooth, but the
bias may be large since f(w) depends on values of I,,(w) at frequencies distant
from w. On the other hand, if m,, is small, the estimator will have a narrow
frequency band and will give an estimator with small bias but with possibly
large variance.

Alternatively, we can also define the lag window estimators as

fulw) = 5= 3 wih/rithe ™,

[hl<r
where w(z) is an even, piecewise continuous function of z satisfying
1. w(0)=1.
2. |lw(z)| <1 for all z.
3. w(z) =0 for |z| > 1.

The function w is called the lag window and fL is called the lag window
spectral density estimator. By taking the special case that w(z) = 1 and
r =n, we have f1(w;) = (1/27)I,(w;) for all nonzero Fourier frequencies w;.

Although the discrete spectral average estimator and the lag window esti-
mator have different expressions, they can be linked by means of a spectral
window, defined as

Wiw) = % Z w(h/r)e” .

|hl<r

It can be shown that

A 1 27
frlw) ~ o > —W(wi)ln(g(n,w) +w;).
l51<n/2]
Consequently, it is a discrete spectral average estimator with weighting func-
tions 9
) T
Wa(j) = ?W(wj)'

It can further be shown that the lag window estimators have desirable asymp-
totic properties under certain regularity conditions; in particular:

1.

lim B(f(w)) = f(w)-

n—oQ

n__z . 272(w) [1, wi(z) dz  ifw=0orm,
Tvar(fL(w)) { Fw) f_llfwz(:c) dr if0<w<m.
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We shall now present a couple of examples for spectral windows.

Example 7.4 (Rectangular Window) The rectangular window has the

form
_J 1 ifjz[ <1,
w(z) = { 0 otherwise.

The corresponding spectral window is given by the Dirichlet kernel

_ysin(r + Jw)

W(w) = (2r) sin(w/2)

In this case, the asymptotic variance is (2r/n)f*(w). O

Example 7.5 (Bartlett Triangular Window) The Bartlett (triangular)
window has the form

0 otherwise.

w(:r)={ L—la| i |z| <1,

The corresponding spectral window is the Fejer kernel,

sin?(rw
W(w) = (27rr)_1—sin2((w //22))

The asymptotic variance in this case becomes (2r/3n) f?(w). O

Comparing these two examples, we see that the Bartlett window has a
smaller asymptotic variance than the rectangular window. Other examples
abound, including the Daniell window, Blackman—Tukey window, Parzen win-
dow, and so on. Each is an improvement on its predecessor in terms of asymp-
totic variance. Details can be found in Priestley (1981).

Finally, confidence bands for spectral estimators can be constructed by us-
ing the fact that v f(w;)/f(w;) is approximately distributed as a chi-squared
distribution with v degrees of freedom, where v = 2/[3 <m.. W2(k)] is
known as the equivalent degrees of freedom of the estimator. Consequently,
for 0 < w; < 7, an approximate 95% confidence interval is given by

( )

2 » 2
X0.975  X0.025

7.5 CONCLUSIONS

Although spectral analysis is useful, it has limitations. First, spectral analysis
deals with estimating the spectral density function, which lies in an infinite-
dimensional function space from a time series of finite length. This is an
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example of the nonparametric density estimation problem. As such, we would
not expect spectral estimation to deliver the same amount of accuracy as for
a finite-dimensional parametric model: an ARMA, for example.

Second, it is important to realize that when inferences are drawn from the
periodogram, we should pay more attention to its overall qualitative behavior
rather than to microscopic details. After all, it is the general shape of the
spectrum that matters most, uncovering periodicity, for example. In this
context, applications of spectral analysis to econometric time series will be
less useful than applications to physical sciences. Since the periodicity of most
econometric time series, such as business cycles or quarterly effects, can easily
be identified, spectral analysis in these areas will be of only marginal value.
Uncovering unexpected periodicity in other areas would be more informative.

Third, prediction in the spectral domain has not been discussed in this
chapter. This was once an active research area, and interested readers can
find more discussion of this topic in Hannan (1970).

7.6 EXERCISES

1. Show that
" ik—m)A _ 2w, ifk=nh,
/_ n € dA { 0 otherwise.

2. Let f be the spectral density function of a stationary process {X,;} with
absolutely summable autocovariance function ~(-) defined by

o0

1 —ihA
-= Y - <.
f) o hz_ooe v(h), —m<A<LT

(a) Show that f is even [i.e., f(A) = f(—N)].
(b) Consider the function

—irA

fa(A)

27rn

Show that fa(A) = (1/27n) 3 1, cn(n — [h|)e**y(h) and that
fa(X) tends to f(A) as n tends to infinity.

(c) Deduce from part (b) that f(A) >0
(d) Show that

(k) = / i eFr () d = i cos(kA)f(\) dX

-7 -
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3. (a) Let {X,} and {Y;} be two stationary processes with spectral density
functions fx(A) and fy(X), respectively. Show that the process
Vi = X + Y is also stationary with spectral density function

fv(A) = fx(A) + fr().
(b) Let V; = X; + Y;, where {X,} satisfies
Xt =aXi 1+ W,

with |a| < 1 and {Y;} and {W;} are independent white noise pro-
cesses with zero mean and common variance 2. Find the spectral
density function of {V;}.

4. Compute and sketch the spectral density function of the process {X;}
defined by

Xt = 0.99Xt_3 + Zt, Zt ~ WN(O, ].)

(a) Does the spectral density suggest that the sample path of {X;} will
exhibit oscillatory behavior? If so, what is the approximate period
of the oscillation?

(b) Simulate a realization of {Xi,...,Xep} and plot the realization.
Does the plot support the previous conclusion? Also plot its peri-
odogram.

(c) Compute the spectral density function of the process

Y; = = (Xio1+ Xt + Xig1).

Wi

Compare the numerical values of the spectral densities of {X;}
and {Y;} at frequency w = 2n/3. What effect would you expect
the filter to have on the oscillations of {X;}?

{d) Apply the three-point moving average filter to the simulated real-
ization. Plot the filtered series and the periodogram of the filtered
series. Comment on your result.

5. Consider an AR(2) model
Y, = ¢1Yso1 + ¢2Yeoa + Z;, Zy ~ WN(0,02).

(a) Derive an expression for the spectral density function of {Y;}.

(b) Simulate a series of length 500 with ¢; = 0.4 and ¢2 = —0.7 by
using Z; ~ N(0,1), i.i.d. Is such a series causal? Plot its peri-
odogram and comment on its shape. Can you detect some period-
icity? Why?
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6. Let {X;} be the process defined by
X: = Acos(nt/3) + Bsin(nt/3) + Y,

where Y, = Z, + 2.5Z;_1, Z; ~ WN(0,0?), A and B are uncorrelated
random variables with mean zero and variance v?, and Z; is uncorrelated
with A and B for each t. Find the autocovariance function and the
spectral distribution function of {X,}.

7. Perform a spectral analysis on the Treasury bill data set discussed in
Chapter 6. State all conclusions from your analysis and compare them
with what you found earlier in a time-domain analysis.
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Nonstationarity

8.1 INTRODUCTION

Different kinds of nonstationarity are often encountered in practice. Roughly
speaking, a nonstationary time series may exhibit a systematic change in
mean, variance, or both. We have developed some intuitive ideas regarding
dealing with nonstationary time series. For instance, by inspecting the ACF,
we may render a series to stationarity by differencing. Since the definition
of nonstationarity varies, we focus our discussion on a special form of non-
stationarity that occurs most often in econometrics and financial time series
(i.e., nonstationarity in the mean level of the series). Before doing that, we
start with a brief discussion of the transformation of nonstationary time se-
ries with nonconstant variances. In the next chapter we study the notion of
heteroskedasticity more systematically.

8.2 NONSTATIONARITY IN VARIANCE

Consider the situation where the mean level of the series is varied determin-
istically, but the variance of the series is varying according to the mean level.
Such a series can be expressed as

Yi = pus + Z,

where p; is a nonstochastic mean level but the variance of {Y;} has the form
var (Y;) = var (Z;) = h?(u¢)o? for some function h. Such an expression has

97



98 NONSTATIONARITY

the effect that the variance of {Y;} is proportional to its mean level u;. To
account for such a phenomenon, we want to find a transformation g on {Y¥;}
such that the variance of g(Y;) is constant (i.e., to find a variance-stabilizing
transformation). This can be accomplished by using a Taylor’s approximation.
Specifically, since

9(Y2) = g(ue) + (Ye — pe)g' (pe),

we have
var (g(Y2)) = [g'(ue))? var (Yz) = [g (ue)?h? (pe)o®.

By specifying the variance of g(Y;) to be a fixed positive constant ¢ (i.e.,
setting the right-hand side of this equation to a constant c), we obtain the
relationship g'(u:) = 1/h(ps).

As an example, if h(u¢) = p, then ¢'(u:) = 1/ps, which implies that
g(pe) = log{y:), resulting in the usual logarithmic transformation. On the
other hand, if k(i) = (u¢)Y/?, ¢'(ps) = (u:)~Y/?, and this implies that
g(u) = 2;1: / 2 resulting in the square-root transformation. In general, the
Box-Cox transformation, y* = (y* — 1)/Aif A # 0 and y* = log(y) if A = 0,
can be used as an appropriate variance-stabilizing transformation. More de-
tails about the Box—Cox transformation can be found in Chapter 7 of Weis-
berg (2006).

8.3 NONSTATIONARITY IN MEAN: RANDOM WALK WITH DRIFT

When nonstationarity in the mean level is presented, the situation can be
more complicated than nonstationarity in variance. Consider a linear trend
plus a noise model

Yi =00+ 5t + Z;.

Differencing leads to
AY; = B+ AZ;.

Although this model is stationary, it is no longer invertible. Another way to
represent a change in mean level is to consider the following two models:

Yi = Bo+bGut+u (TS),
Y, = B+Yioi+v  (DS),

where the {v;}’s are usually correlated but stationary. Both (TS) and (DS)
give rise to a time series that increases in the mean level over time, but a
fundamental difference exists between them. For the first model, a stationary
process {v;} results after detrending, while for the second model, a stationary
process {v;} results after differencing. If we were to difference the first model,
the resulting process becomes

AY’i = /31 + Avt,
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so that a noninvertible process {Awv;} results. This is undesirable. The real
question becomes how we can differentiate between these two models. This
is one of the challenging problems for econometricians, and one way to re-
solve this is to build a model that encompasses both situations. Specifically,
consider the model

Y = Bo + Bt + vy,

where
Ut = 0Vi—1 + Zt, Zt ~ N(O,Uz), iid.

Simple algebra shows that

Yi = Botbit+tavi-1+2;
= fo+pit+alYio1—Fo—Fi(t—1))+ Z,
= Bo(l-a)+pi(t—-alt-1))+aYi1+ Z;
= Go(l-a)+fia+tbh(l—a)+aY; )+ Z;
= Yo +mt+aYi_i +Z,

where the symbol := means “defined as.” In this case, 79 = Bo(1 — @) + f1
and v; = f1(1 — a). Note that:

1. fa=1,v%=01,11=0and Y; = 51 +Y;_1 + Z;, we end up with model
(DS), a differenced stationary series.

2. Ifa <1,Y; = v +mt+ aYeoi + Z;, we end up with model (TS), a
trend stationary series.

Also observe that the trend stationary {Y;} satisfies
i =7 +mt+aY + Z,

so that
1-B)Y:=v+mt+(a—-1)Yi_1 + Z..

We can test for the coefficient @ = 1. If @ = 1, recall that vo = 8; and v1 =0,
so that we have a differenced stationary series

(1-B)Y; =01+ Z;. (8.1)
On the other hand, if & < 1, we have a trend stationary series
(1-BY:=y+nt+(a-1)Y1+Z. (8.2)

To perform this test, we have to inspect the regression coefficient (o — 1) of
Y;_1 in equation (8.2) to test if it is equal to zero. Under the null hypothesis
H:a=1,(8.2) reduces to (8.1).

Looking at it differently, if we rewrite (8.2) as

Yi=v+mt+aY,1 + Z;, (8.3)
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then under H : & = 1 (recall that vy = $; and 1 = 0), (8.3) becomes
Yi=6+Yio1+ Z;. (8.4)

Comnsequently, the problem of testing for the regression coefficient H : a—1 =0
in (8.2) can be reformulated as the problem of testing for H : @ = 1 in (8.3),
which in turn is reformulated to testing for H : o = 1 in the following problem:

Yi =0 +aY1 + Z;.

This problem turns out to be related to the unit root statistic, discussed in
the next section.

8.4 UNIT ROOT TEST

The previous discussion leads us to consider the following testing problem.
Consider testing for the AR coefficient H : & = 1 in the model

Y, =B +aYi + Zs. (8.5)

To illustrate the key idea, let us assume further that 5; = 0 in equation (8.5).
Then {Y;} follows a random walk model under H, and statistical tests for this
kind of model are collectively known in the time series and econometric liter-
ature as random walk or unit root tests. Consider the least squares estimate
& for o in (8.5). It is of the form

&= 2?:1 th}/t—l
Z?:l },152—1
In particular,
1 Y1z
n(a— 1) = WM 2uza Vi1 Z (8.6)

A/m)2 3 Y,
To study the properties of the test statistic in equation (8.6), we need to
consider the asymptotic behavior of the numerator and denominator. For

the denominator, we rely on the simple form of the functional central limit
theorem (invariance principle):

Theorem 8.1 Let Z,,...,7Z, be a sequence of i.i.d. random variables with
mean zero and variance 1. Lett € [0, 1] be given and let Y, (t) = (1/+/n) Zyﬁ Z;,
where [nt] denotes the integer part of the number nt. Then Y, (t) 2 W(t) as

n tends to oo, where W(t) is a standard Brownian motion defined on (0, 1].
A proof of this theorem can be found in Billingsley (1999). In Section

8.5 we discuss how to use a discretized version of this theorem to simulate
the sample path of Brownian motion. In terms of (8.6), observe that under



UNIT ROOT TEST 101

H:a=1Y = Z:zl Z;. Therefore, direct application of Theorem 8.1
immediately yields (1/y/n)Y (t) 2 W (t). Accordingly, the denominator in

(8.6) can be shown to converge to
1 n n Yt—l 2 1
—N"vy2, = Z (_) -
QZ t—1

n t=1 t=1 \/ﬁ n

1
N / W2(t) dt.

L 0

Analyzing the numerator in (8.6) is more tricky. Consider the following

derivation. Under H : a =1,

! = Yi1+2,
Y2 = Y2, +2Yi12:+ Z2. (8.7)

Summing both sides of (8.7) from 1 to n and simplifying yields

n 1 n
ZYt—th =3 <Y112 - ZZ?) . (8.8)
t=1 t=1

Clearly, Y,2/n 2 W2(1) and (1/n) 337, Z2 — 1 almost surely. Substituting

these facts into (8.8), we obtain
1 1
Y Y “w21) -1
n; -1Ze 2 W) -1

- [woawe,
0

where the last step follows from Itd’s rule; see, for example, @ksendal (2003).
In summary, we have derived the following theorem.

Theorem 8.2 Let Y; follow (8.5) with f1 = 0. Then under H: o =1,

1
n(é—1) 2 L’—I;V(tzd—w(t). (8.9)
Jo W2(t) dt

The result above is usually known as the unit root test statistic or Dickey—
Fuller statistic. Its numerical percentiles have been tabulated by various peo-
ple and can be found in the books of Fuller (1996) and Tanaka (1996). When
the assumption that 31 = 0 is removed, the argument above can be used with
slight modification, and the resulting statistic will be slightly different from
(8.9). Details of these extensions can be found in Tanaka (1996).
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8.5 SIMULATIONS

As the asymptotic distributions related to unit root tests are mostly non-
standard, one has to resort to simulations in empirical studies. To this end,
Theorem 9.1 serves as the building block, and one can simulate functionals of
Brownian motions as follows.

Consider a discretized version of Theorem 8.1:

W(tii1) = W(ts) + e, VAL, (8.10)

where tx11 —tx = At, and k = 0,...,N with £, = 0. In this equation,
€, ~ N(0,1) are i.i.d. random variables. Further, assume that W (¢y) = 0.
Except for the factor At, this equation is the familiar random walk model.
Note that from this model, we get for j < k,

W () — t)—Zet,\/—

=j

There are several consequences:

1. As the right-hand side is a sum of normal random variables, W (t;) —
W (t;) is also normally distributed.

2. By taking expectations we have

E(W(ts) - W(t;)) =0,

2

var (W(tg) - W(t;))=E ZE’ =(k—j) At =t —t;.

i=j
3. For t; <tg <t3 <1y,
W(ts) — W(ts) is uncorrelated with W(ty) — W(ty).
Equation (8.10) provides a way to simulate a standard Brownian motion
(Wiener process). To see how, consider a partition of [0, 1] into n subintervals
each with length 1/n. For each number ¢ in [0, 1], let [nt] denote the greatest

integer part of it. For example, if n = 10 and ¢ = §, then [nt] = [%] = 3.
Now define a stochastic process in [0, 1] as follows. For each ¢ in [0, 1], define

[nt]

Siny) = Z €, (8.11)

where ¢; are i.i.d. standard normal random variables. Clearly,

1
S[nt] = S[nt]—l + E[nt]%a
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which is a special form of (8.10) with At = 1/n. Furthermore, we know that
att =1,

1 n
S[nt] =8, = _\/—7_1 ;fi

has a standard normal distribution. Also by the central limit theorem, we
know that S, tends to a standard normal random variable in distribution
even if the ¢; are only i.i.d. but not necessarily normally distributed. The
idea is that by taking the limit as n tends to oo, the process Spn) would tend
to a Wiener process in distribution. Consequently, to simulate a sample path
of a Wiener process, all we need to do is to iterate equation (8.11).

In other words, by taking limit as At tends to zero, we get a Wiener process
(Brownian motion):

dW (t) = e(t)Vdt,

where €(t) are uncorrelated standard normal random variables. We can in-
terpret this equation as a continuous-time approximation of the random walk
model (8.10). Of course, the validity of this approximation relies on Theo-
rem 8.1.

8.6 EXERCISES

1. Using equation (8.11}, simulate three sample paths of a standard Brow-
nian motion for n = 100, 500, and 1000 and plot out these paths with
the SPLUS program.

2. Download from the Internet the daily stock prices of any company you
like.

(a) Plot out the daily prices. Can you detect any trend?

(b) Construct the returns series from these prices and plot the his-
togram of the returns series. Does it look like a normal curve?

(c) Construct the log returns series from these prices and plot the
histogram of the log returns series. Does it look like a normal
curve?

(d) Use Exercise 1 in conjunction with Theorem 8.2 to simulate the
limiting distribution of the unit root statistics.

(e) Perform a unit root test on the hypothesis that the log returns
series of the company follows a random walk model.
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Heteroskedasticity

9.1 INTRODUCTION

Similar to linear regression analysis, many time series exhibit a heteroskedastic
(nonconstant variance) structure. In a linear regression model, if the response
variable Y has a nonconstant variance structure such as

w;, 0 -+ 0
0 wo 0

Y = X3+ e, where var (e) = o? . ) . ,
0 .- Wn

then instead of using the ordinary least squares procedure, we use a gener-
alized least squares (GLS) method to account for the heterogeneity of e. In
time series it is often observed that variations of the time series are quite small
for a number of successive periods of time, then much larger for a while, then
smaller again for apparently no reason. It would be desirable if these changes
in variation (volatility) could be incorporated into the model.

A case in point is an asset price series. If a time series of an asset price
on a log scale (e.g., stock or bond prices, exchange rates in log scale, etc.)
is differenced, the differenced series looks like white noise. In other words, if
{Y:} denotes the series of the log of the price of an underlying asset at period
t, we usually end up with an ARIMA(0,1,0) model for {Y;},

A)’t = Xt = €, where €t ~ N(O,l), iid. (91)
105
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This equation simply states that the returns of the underlying asset X; =
Y; —Y;_1 behave like a Gaussian white noise sequence, which is consistent with
the celebrated random walk hypothesis. Although this seems reasonable as
a first-order approximation, further analysis reveals other kinds of structures
that cannot be explained adequately by equation (9.1). Typical signatures of
these features, usually known as stylized-facts are:

1. {X:} is heavy-tailed, much more so than the Gaussian white noise.

2. Although not much structure is revealed in the correlation function of
{X:}, the series { X?} is highly correlated. Sometimes, these correlations
are always nonnegative.

3. The changes in {X;} tend to be clustered. Large changes in {X;} tend
to be followed by large changes, and small changes in {X;} tend to be
followed by small changes.

The last point deserves some attention. The pursuit for understanding
changes in the variance or volatility {o:} is important for financial markets;
investors require higher expected returns as a compensation for holding riskier
assets. Further, a time series with variance changing over time definitely has
implications for the validity and efficiency of statistical inference about the
parameters. For example, the celebrated Black—Scholes formula used in option
pricing requires knowledge of the volatility process {o:}.

It is partly for these reasons that time series models with heteroskedas-
tic errors were developed. In this chapter we discuss the popular ARCH
and GARCH models briefly. There are other alternatives that can be used
to capture the heteroskedastic effects: for example, the stochastic volatility
model. A nice review of some recent developments in this field can be found
in Shephard (1996). There is also a GARCH module available in the SPLUS
prograrm.

9.2 ARCH

One of the earliest time series models for heteroskedasticity is the ARCH
model. In its simplest form, an ARCH model expresses the return series X;
as

Xi = otey,

where it is usually assumed that ¢; ~ N(0, 1), i.i.d. and o, satisfies

p
of =00+ Y aXP, (9.2)
i=1
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Let Fi—y = 0(X;—1, Xt—3,...) denote the sigma field generated by pass infor-
mation until time £ — 1. Then

E(X?|Fi-1) = E(of€|Fi-1)

= o7E(€]|Fe-1)

= o2
This identity implies that the conditional variance of X; evolves according
to previous values of X? like an AR(p) model: hence the name pth-order
autoregressive conditional heteroskedastic, ARCH(p), model. Clearly, condi-
tions need to be imposed on the coefficients in order to have a well-defined
process for equation (9.2). For example, to ensure that 02 > 0 and X, is well
defined, one sufficient condition is

a; >0 for i=0,...,p,
and
a1+~~-+ap<1.

We do not pursue proof of this statement here. Interested readers can find
related discussions in standard references on ARCH [see, e.g., Campbell, Lo,
and MacKinlay (1997) or Gouriéroux (1997)]. Instead, let us consider the
following ARCH(1) example.

Example 9.1 Let X; = ose; with 0? = ag + a3 X?_,. Substituting this recur-
sion repeatedly, we have

2 _ 22
Xy = oig

oo+ n X))
Et ao al t—1

2 2 2
= aoe +onX{ €

il

2 2/ 2 2
g€y + 0n€;(0f 1€ 1)
2 2.2 x2
ao€; + aa€€6;_g (g + a1 X{ )
n
— J2. .. .2 n+l 2 2 2 2
= o E :alet eyt o e e g X o
Jj=0

If 1 < 1, the last term of the expression above tends to zero as n tends to
infinity, and in this case,

oc
X? =a02a]16t2---ef_j. (9.3)
=0

In particular, EXZ = ag/(1 — a1). The following conclusions can be deduced
from this example.
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1. It follows from equation (9.3) that X, is causal although nonlinear [i.e.,
it is a nonlinear function of (e, €:—1,...)]

E(X:) = E(E(Xt'ft_l)) = E(E(Utftlft—l)) = 0
3. var (X;) = E(X?) = ap/(1 — 1).
4. For h > 0,

E(Xi4nX:) = E(E(Xe+nXt|Ftin-1))
E(XtE(at+h€t+h‘ft+h—l))
0.

il

5. E(thl]:t—l) = O'tz =qag + alth_l.
Alternatively, we can express the ARCH(1) model as
X2 = e XE-o?

ap+on X7, +ol(e —1)
= Qg -+ al-th—] + vt.

Formally, we can think of an ARCH(1) as an AR(1) for the process {X?}
driven by a new noise {v;}. By assuming that 0 < a; <1 and the process to
be stationary, what can we say about the covariance structure of an ARCH(1)?
To answer this question, we have to evaluate the covariance function of X2.
To this end, consider

E(c}) = E(ao+aX?,)?
= ag + 2a1a(2)/(1 —ay) + a%{var th_l + [E(Xf_l)]2}. (9.4)

Recall that X? = ag + a1 X2, + vs, so that

var (X2) = var (v)/(1 - a?) (9.5)
var (v;) = var (02(e? — 1))
= E(o})E(ef - 1)°

2E(a}). (9.6)

Substituting equations (9.5) and (9.6) into (9.4), we obtain
E(0}) = of + 2afen /(1 — a1) + 2E(0})a/(1 — o) + afeg/(1 — o1)*.
Simplifying this expression, we have

1-303 o}
14a; 1-og

E(a}) 9.7
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If 1 > o} > 1, the left-hand side of (9.7) is negative while its right-hand side
is positive, leading to a contradiction! Therefore, for the process to be well
defined [i.e., E(0}) exists], o < 1. In this case we can deduce the following
observations:

1. For simplicity, suppose that EX2 = ap/(1 — o) = 1. Then
EX{ = E(ote) = 3E(0})

_ 5 a? 1-a?
(1—a1)?| 1-3a2

_ 3 1-a?

1 — 30}

. s 1
> 3 since algg.

Therefore, the heavy-tailed phenomenon is reflected in this model.
2. Due to the AR(1) structure of { X7}, it is clear that
corr (X2, X2 ,)=a} >0.
This reveals the nonnegative nature of the ACF of X?.

3. The ARCH(1) equation 02 = ag + a1 X2 ; partially captures the phe-
nomenon that large changes in return would be followed by large changes
in variance (volatility).

9.3 GARCH

Similar to the extension from an AR model to an ARMA model, one can
extend the notion of an ARCH model to a generalized ARCH, (GARCH)
model. Specifically, a GARCH model can be expressed in the form

X = oy, €t~ N(07 1)7
p q

of = oo+ Biok i+ aXP; (9.8)
i=1 j=1

Conditions on a’s and §’s need to be imposed for equation (9.8) to be well
defined. Since finding exact conditions for a general GARCH(p, ¢) model can
be tricky, one has to resort to case-by-case study. A glimpse of the technical
aspects of this problem can be found in the article by Nelson (1990). One of
the main reasons to consider the GARCH extension is that by allowing past
volatilities to affect the present volatility in (9.8), a more parsimonious model
may result. We shall not pursue the GARCH model in its full generality, but
instead, let us consider the following illustrative GARCH(1,1) model.
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Example 9.2 Let X; be a GARCH(1,1) model so that
af = ap + alth_l + ﬂwfﬂl.

Since a2_, is unobservable, one way is to estimate it from the initial stretch of
the data, say the first 50 points. This procedure is often unsatisfactory, and a
better approach is to reparametrize it and to think of it as an ARMA process.
Specifically, consider

X = ot (X2 -oh)
= ap+ ale_l + ;5’10?_1 +XZ2- o’f
= ao+(a +B)XP — XD — 0l )+ XE ~ o}
= ag+ (o1 +B)XE + v — Brve,

where v; = X2 — 0% = a2(e? — 1). With this expression, the process {X2} can
be viewed as an ARMA(1,1) process driven by the noise v;. a

This fact is true in general. One can deduce easily that

Theorem 9.1 If X; is a GARCH(p, q) process, then X? is an ARMA(m,p)

process in terms of vy = 02(e2 — 1), where m = max{p, ¢} with o; =0, i > ¢

and 3; =0, j > p.
Remarks

1. When a GARCH(1,1) model is entertained in practice, it is often found
that aq + 81 = 1. When a; + 1 = 1, the underlying process X; is
no longer stationary and it leads to the name integrated GARCH(1,1)
[IGARCH(1,1)] model. One of the interpretations of the IGARCH(1,1)
model is that the volatility is persistent. To see this point clearly, con-
sider

E(Ut2+1|-7:t—1) = E(ao+ o1 X}? + 810%|F1-1)
= ag+ (a1 +B1)o} = ap + 0}
E(07,2lFei-1) = E(E(07a|F:)|Fe-1)
= E(ag+07,|Fi1)
= 209+ 01:2-
In general, by repeating the preceding argument, we have

E(07,;|Ft-1) = jao + of. (9.9)

Notice that we have conditioned on F;_; instead of F; since o¢y1 is
measurable with respect to the smaller sigma field F; so that

E(Ut2+1|-7:t) = Ut2+1-
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Therefore, we would like to look at the genuine one-step-ahead predic-
tion E(oZ,,|F;-1). According to equation (9.9), today’s volatility affects
the forecast of tomorrow’s volatility, and this effect keeps perpetuating
into the infinite future. Hence, any shock to X? or o? will be carried
forward (i.e., persist). Although the IGARCH(1,1) model bears a strong
resemblance to the random walk model, precautions need to be taken
for such an analogy; see Nelson (1990) for details.

2. In equation (9.8), only the squares or magnitudes of X;_; and o;_; affect
the current volatility 2. This is often unrealistic since the market reacts
differently to bad news than to good news. There is a certain amount
of asymmetry that cannot be explained by (9.8).

3. Owing to the considerations above, there are many generalizations of
the GARCH model to capture some of these phenomena. There are
t-GARCH, e-GARCH, and n-GARCH models, just to name a few. We
shall not discuss any of these here, but the basic concept is to extend
the notion of conditional heterogeneity to capture other observed phe-
nomena.

4. The Gaussian assumption of ¢; is not crucial. One may relax it to allow
for more heavy-tailed distributions, such as a ¢-distribution. SPLUS does
allow one to entertain some of these generalizations. Of course, having
the Gaussian assumption facilitates the estimation process.

9.4 ESTIMATION AND TESTING FOR ARCH

According to the definition of ARCH, it is clear that X;|F;_; ~ N(0, 0?) with
conditional probability density function

1
F(@|Feo1) = @ro?) 2 exp (—sz) ’

t

where 0 = ag + )_F_, a;z2_,. By iterating this conditional argument, we
obtain

f(Zn, ... 21lT0) = f(@nlTn-1,...,%0) - f(@2]Z1, Z0) f(1]0),

log f(zn, ..., 31m0) = Z log f (x¢|Fe-1)

=1
n 1 2 1~z
—Elog27r+z—§logat - EZ

t=1 t=1

Therefore, substituting o?(0p, a1, ...,0p) = ap + > 1, osz?_; into the equa-
tion above for different values of (ao, ...,0p), the MLEs can be obtained by

(9.10)

w|w
.
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maximizing the log-likelihood function above numerically. If it turns out that
the ¢; is not normal, one can still use this method to obtain the pseudo (quasi)
maximum likelihood estimate (PMLE or QMLE). Details can be found in
Gouriéroux (1997).

Note that this method can also be applied to the GARCH model. Recall
that in the linear time series context, it is usually more tricky to estimate an
ARMA model than a pure AR model, due to the presence of the MA part.
In the estimation of a GARCH model, similar difficulties are encountered. To
illustrate the idea, consider the simple GARCH(1,1) example, where

02 =g+ ay X2, + ol ;. (9.11)
Rewriting the equation above in terms of the volatility o? yields

07 = (1-6B) ao+aXZ,)
(1+ BB+ BiB* + - Yoo+ a1 X2 1)

Therefore the volatility o7 depends on all the past values of X2. To evaluate
from this equation, we truncate the values of X; = 0 for t < 0 and ort =

0 for t < 0. Then o2 is approximated by 62 for t = 1,2,... recursively as

67 = a0+ o X2 | + 41674,

where X; =0 for t <0, X, =X, fort> 0, and 2 = 0 for ¢ < 0. By iterating

this equation, we get

~2
gy = Qq,
~2 v 2 ~2
0’2 = Qg +a1X1 +ﬂ10’1
2
= o+ o1 X] + Biay,

Substituting this expression for 62 for various values of 8 = (ag, a1, 51) into
the likelihood function (9.10) and maximizing it, we can find the MLE nu-
merically. In general, the same idea applies to a GARCH(p, ¢) model.

Finally, another popular approach to estimation is the generalized method
of moments or the efficient method of moments, details of which can be found
in Shephard (1996).

As far as testing is concerned, there are many methods. In what follows,
we discuss three simple approaches.

1. Time series test. Since an ARCH(p) implies that {X?} follows an AR(p),
one can use the Box—Jenkins approach to study the correlation structure
of X2 to identify the AR properties.

2. Portmanteau tests for residuals. Let the Portmanteau statistic be
defined as

h
n(n+2) ) r?(j)/(n - j),
=1
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where 7(j) denotes the ACF of the fitted residual of X?2. If the model
is specified correctly, then for large sample sizes,

2
Q _Z’ Xh—m>

where m is the number of independent parameters used in the model
and 7 denotes convergence in distribution as the sample size n — 0.

3. Lagrange multiplier test.

Theorem 9.2 Assuming that X; is an ARCH(p) model, regress X?

with respect to XZ_1,..., X2 , and form the fitted regression equation
) P
X2=60+) X}, (9.12)
i=1

Let R? denote the coefficient of determination from (9.12). Then under

the null hypothesis H: a; = --- = ap = 0 (i.e., no heterogeneity),
nR2 vy x%.

Note that Theorem 9.2 is stated in terms of nR?, which can be shown to
be asymptotically equivalent to the Lagrange multiplier test statistic. Again,
details of this equivalence can be found in Gouriéroux (1997). Although this
is a widely used statistics, it has been documented that it has relatively low
power. Thus we should use it with caution. When the underlying conditional
structure is misspecified, rejecting the null hypothesis may not necessarily
mean that the GARCH effect exists.

9.5 EXAMPLE OF FOREIGN EXCHANGE RATES

In this example, the weekly exchange rates of the U.S. dollar and British
pound sterling between the years 1980 and 1988 analyzed earlier are studied
again. The data are stored in the file exchange.dat on the Web site for this
book. Let ex.s denote the SPLUS object that contains the data set. We
perform a time series analysis on ex.s as follows. First, the histogram of the
data is plotted and it is compared with the normal density. As usual, we start
by differencing the data.

>dex<~-diff (ex.s)

>hist(dex, prob=T, col=0)

>library(MASS)

>c(ucv(dex,0) ,bcv(dex,0))

(1] 0.0038 0.032

(This command gives an estimate for the size of the window
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Fig. 9.1 Histograms of the differenced exchange rates.

used in constructing a kernel density.)
>lines(density(dex,width=0.03),1ty=3)

(This command draws a kernel estimate of the histogram of
the data with a bin width of 0.03)

>x<-seq(-0.1,0.1,0.01)
>lines(x,dnorm(x,mean(dex),sqrt(var(dex))),lty=1)

(This command draws a normal density with mean and variance
being the mean and variance of the data, i.e., treating the data
as normally distributed.)

> leg.names<-c("Kernel Density", "Normal Density")

> legend(locator(1), leg.names, lty=c(3,1))

(These last two commands produce the legends for the graphs.)

If we look at Figure 9.1, the heavy-tailed phenomenon, particularly the
right-hand tail, is clear. Next, an exploratory time series analysis is performed
to compare the structures of the ACF of the data, the differenced data, and
the squares of the differenced data.

>par(mfrow=c(3,2))
>tsplot (ex.s)
>acf(ex.s)

>tsplot (dex)

>acf (dex)

>tsplot (dex*dex)
>acf (dex*dex)
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Series : ex.s
L] 1] " I.H.l » ]
Series : dex
8
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Fig. 9.2 Time series plots and ACFs for X, and X?Z.
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In the case of R, replace the command “tsplot” in SPLUS by the command
“ts.plot” in R. The other commands in R are exactly the same as in SPLUS .

Inspection of Figure 9.2 confirms the possibility of an ARCH/GARCH
structure. To test for this possibility, we use the Lagrange multiplier (LM)
test. To this end, regress X? with respect to X2 ;, X? 5, X2 3, X2 ,. Lag 4
is chosen because analysis with further lags does not reveal extra information.

>x1<-lag(dex)
>x1<-c(0,x1[1:468])
>x2<-lag(x1)
>x2<-c(0,x2[1:468])
>x3<-lag(x2)
>x3<-c(0,x3[1:468])
>x4<-1lag(x3)
>x4<-c(0,x4[1:468])
>z1<-x1*x1
>z2<~x2%x2
>z3<-x3%x3
>z4<-x4%*x4
>Im.1<-1m(dex*dex~zi+z2+2z3+z4)
>summary (1m.1)
Call: 1lm(formula = dex * dex ~
Residuals:

Min 1Q Median 3Q Max
-0.002848 -0.0006073 -0.0004331 0.0001337 0.0187

z1l + 22 + 23 + z4)

Coefficients:
Value Std. Error t value Pr(>[t])
(Intercept) 0.0005 0.0001 5.4863 0.0000
z1 0.0469 0.0461 1.0171 0.3096
z2 0.0333 0.0457 0.7275 0.4673
z3 0.1379 0.0458 3.0130 0.0027
z4 0.1099 0.0461 2.3813 0.0177

Residual standard error: 0.00151 on 464 degrees of freedom

Multiple R-Squared: 0.04026

F-statistic: 4.866 on 4 and 464 degrees of freedom, the
p-value is 0.0007485

Correlation of Coefficients:
(Intercept) z1 z2 23

z1 -0.2837

z2 -0.3088 -0.0634
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z3 -0.3065 -0.0387 -0.0682
z4 -0.2807 -0.1450 -0.0389 -0.0655

> t<-470%0.04026
> 1-pchisq(t,4)
(1] 0.0008140926

The p-value of the LM test is 8 x 1074, and consequently, the presence of
heterogeneity is confirmed. The last step is to fit a GARCH model to the
data.

>module(garch)
>dex.mod<-garch(dex”-1, garch(1,1))

In the case of R, replace the command “module(garch)” in SPLUS by the
command “library(tseries)” in R, since the R command “grach(}” comes
from the “tseries” library. The command for fitting a GARCH(1,1) in R
is “garch(dex,order=¢(1,1))”.

> summary(dex.mod)

Call: garch(formula.mean = dex ~ -1, formula.var = ~ garch(1,1))
Mean Equation: dex ~ -1
Conditional Variance Equation: =~ garch(i, 1)

Conditional Distribution: gaussian

Estimated Coefficients:

Value Std.Error t value Pr(>ltl|)

A 3.157e-05 1.374e-05 2.298 0.0110107
ARCH(1) 6.659e-02 2.045e-02 3.256 0.0006068
GARCH(1) 8.915e-01 3.363e-02 26.511 0.0000000

-2064.388
-2051.936

AIC(3)
BIC(3)

>plot(dex.mod)
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From this fit, we arrive at the model
02 =32x107°+0.8902 ; +0.067X2 ;.

Figure 9.3 displays the plot of the fitted model, which consists of the ACF of
the squares of the data, the conditional standard deviations, the ACF of the
residuals of the fitted model, the normal probability (Q-Q norm) plot of the
residuals, and so on. There are other options from the SPLUS program; readers
can experiment with them. From the @-Q norm plot, heavy-tailed effects still
exist in the residual. Further, 1 + 81 2 1; a possible IGARCH(1,1) model is
considered. We can do this by executing the following commands:

>new.mod<-revise(dex.mod)
Make a selection (or O to exit):

1: edit: C
2: edit: CO
3: edit: arch
4: edit: garch

Selection: 3

S—PLUS Data Editor

Jo DessaTrtea

Fig. 9.4 Data editor.

A data window such as Figure 9.4 comes up at this point. For example, if
you want to change the o; value in UNIX, highlight it at the top row and hit
the delete key. Type in the new value you want, 0.069, and hit the return key
for this example. This will change the arch.value from the original display
into 0.069. If you would like to use this as a starting value and estimate it
from the model again, leave the default value under arch.which as 1. If you
would like to fix it, change this value to 0. In this example, we leave it as 1.
Click on the commit and quit icons to commit the change.

Suppose now that we would like to set ag = 0. Choose 2 from the edit
menu. Another data menu like Figure 9.5 comes up. Change the value to 0
and the which level to 0 to fix it. Click on the commit and quit icons again.
The model has now been revised. Now fit the revised model with garch.

>dex1.mod<-garch(series=dex,model=new.mod)
>plot(dexl.mod)
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Essentially, we arrive at the revised model:

o = 0.069X7 ; + 0.9307_,.

This is an IGARCH(1,1) with plots given in Figure 9.6. This seems to provide
a better fit than the GARCH(1,1) alone in the sense that the Q-Q norm
plot has a less heavy-tailed effect. The improvement seems to be marginal,
however.

There are other kinds of options that one can try with the SPLUS program.
For example, one can simulate the fitted model, change the distribution of
the error term to nonnormal, predict future o;, and so on. We shall not
pursue these details; interested readers can explore these options with the
help command or consult the SPLUS GARCH manual.

9.6 EXERCISES

1. Let X, be an ARCH(1) process
0't2 =g+ 011Xt2_1.
(a) Show that

af l+m

4\ _
E(at)_ 1—0!11—3021).

(b) Deduce that
ad 14+o
1- (o5} 1- 3&% )

2. Show that for an IGARCH(1,1) model, for j > 0,

E(X})=3

E(O't2+s|ft_1) = jogo + O'tz.

3. Let X; be a GARCH(2,3) model,

2 3
2 _ 2 2
of =00+ Y Bl i+ o XL
i=1 j=1

I$ — FPLLIS [Dratea Ecditc|

S = I mestcoc=

Fig. 9.5 Data editor.
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Show that X? can be written as an ARMA(3,2) model in terms of the
process v; = o?(e? — 1). Identify the parameters of the ARMA process
in terms of the parameters of the given GARCH(2,3) model.

4. Perform a GARCH analysis on the U.S. Treasury bill data set discussed
in Chapter 6.
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Multivariate Time Series

10.1 INTRODUCTION

Often, time series arising in practice are best considered as components of
some vector-valued (multivariate) time series {X.} having not only serial
dependence within each component series {X;}, but also interdependence
between different components {X;;} and {Xy;}, ¢ # j. Much of the theory
of univariate time series extends in a natural way to the multivariate case;
however, two important problems arise.

1. Curse of dimensionality. As the number of components in {X,} in-
creases, the number of parameters increases. As an example, for a mul-
tivariate time series consisting of a portfolio of 10 equities, even a simple
vector AR(1) model may need up to 100 freely varying parameters; the
curse of dimensionality comes into effect.

2. Identifiability. Contrary to the univariate case, it is not true that an
arbitrary vector ARMA model can be identified uniquely. We shall see
an example of this later.

In this chapter we aim to provide a brief summary of multiple time series
which leads to the development of vector autoregressive and moving average
(VARMA) models. We do not attempt to provide a comprehensive account of
the details of multiple time series; interested readers are referred to Liitkepohl
(1993) and Brockwell and Davis (1991).

First introduce a few basic notions. A k-variate time series is a stochastic
process consisting of k-dimensional random vectors (X;1, Xi2,. ., Xik)' ob-
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served at times ¢ (usually, t = 1,2,...). The component series {X¢} could
be studied independently as univariate time series, each characterized, from
a second-order point of view, by its own mean and autocovariance function.
Such an approach, however, fails to take into account the possible dependence
between the two component series, and such cross-dependence may be of great
importance for predicting future values of the component series.

Consider the series of random vectors, X; = (Xy1, ..., Xtw) and define the
mean vector

= E(X,) = (BE(Xu), ... ,E(th))l
and covariance matrices
it +ht) - y(t+h,t)
T(t+ h,t) = cov(X¢yn, Xy) = : : ,
Yer(t +h,t) oo yee(t+ hyt)

where 7;;(t + h,t) = cov(X¢4n,i, Xt,j). In matrix notation,
Lt +h,t) = E(Xern — poyn) (Xt — py)

The series { X} is said to be stationary if the moments p, and I'(t + h, t) are
both independent of ¢, in which case we use the notation

p = E(X:)
and
I'(h) = cov(X¢tn, Xt).

The diagonal elements of the matrix above are the autocovariance functions of
the univariate series { Xt; }, while the off-diagonal elements are the covariances
between X;ip,; and X, @ # j. Notice that +;;(h) = v;:(—h). Correspond-
ingly, the autocorrelation matrix is defined as

pu(h) -+ pix(h)
R(h) = : : ;
pei(h) -+ pre(h)

where
pii (h) = 75 (h) (7 (0);; (0)) /2.

Example 10.1 Consider the bivariate time series

Xn = Zy,
Xio =2, +0.752,-10, Zp~ WN(O, 1).

Then p =0 and

Z, /1 1
F(O) =E [(Zt +0.75Zt_10) (Zt,Zt + 0.75Zt._10):| = ( 1 1+ (0.75)2 ) .
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Similarly,

0 0.75 0 o
r(-10) = < 0 075 ) and  T(10) = ( 0.75 0.75 )

Further,

R10) = (g g ) 2O = (o 5 ).

R(10) = ( 0(.)6 0.(4)18 )
Theorem 10.1 The following results hold:
1. T(h)y =T(-h).
2. i ()| < [7ia(0)5 (0)]/2,

and

3. .
> @il - j)a; >0,
i,i=1
forn=1,2,... and ay,as,...,a, € R*.
Proof

1. By assuming that p = 0,
P(h) = E Xt+h.X;)

X, nX;) Dby stationarity

2. Follows from |p;;(h)| < 1.

3. Follows from )
E (Za;(Xj—u)) > 0.
=1

This is also known as the positive semidefinite property of I'(-).
The simplest multivariate time series is a white noise.
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Definition 10.1 {Z;} ~ WN(0,X) if and only if {Z:} is stationary with

g =0 and
¥ if h=0,
L(h) = { 0 otherwise.
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Definition 10.2 {Z;} ~1.i.d.(0,X) if {Z,} are independent identically dis-
tributed with p = 0 and covariance matric 3.

Definition 10.3 {X.} is a linear process if it can be expressed as
Xi= Y C;Z; for{Z}~WN(,X),
Jj=-—00

where {C;} is a sequence of k x k matrices whose entries are absolutely
summabdle, that is,

Y ICii D) <oo fori,l=1,2,....k
j=—0c
Clearly, for a linear process X, E(X;) =0 and
T(h)= Y C;iEC), h=0+1,42,. ..
j=-—o00
An MA(o0) representation is the case where C; = 0 for j <0,
Xt = Z Cth_j.

3=0

An AR(oo) representation is such that
Xt + ZAJXt—] == Zt'

j=1

Finally, for a spectral representation, if ), |vij(h)| < oo for every i,j =
1,...,k, then

and T’ can be expressed in terms of

I'(h) = /ﬁ e F(N) dA.

—T

Note that both I'(h) and f(A) are k x k matrices in this case.
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10.2 ESTIMATION OF iz AND T

A natural estimator of the mean vector g in terms of the observations X, X o,
..., Xp, is the vector of sample means

X =

S

Z X;.
t=1

For I'(h) we use
1 - _
fy={ n t;(xm - X)}(X;—X) for0<h<n-1,
L'(-h) for —-n+1<h<0.

The correlation p;;(h) between X, ; and X, ; is estimated by
pig(h) = i (h) (3:(0)355 (0) /2,

where #;;(h) is the (4, j)th element of I'(h). If i = j, pij reduces to the sample
autocorrelation function of the ith series.

10.3 MULTIVARIATE ARMA PROCESSES

As in the univariate case, we can define an extremely useful class of multivari-
ate stationary processes { X} by requiring that {X,} should satisfy a set of
linear difference equations with constant coefficients. The multivariate white
noise {Z} constitutes the fundamental building block for constructing vector
ARMA processes.

Definition 10.4 {X,} is an ARMA(p, q) process if { X} is stationary and
if for every t,

X -1 Xy 1 - - @, X ,=Z:4+O1Z; 1+ + O Z; g,

where {Z;} ~ WN(0,X). [{X:} is an ARMA(p,q) process with mean p if
{X:— u} is an ARMA(p, q) process |.

Equivalently, we can write this as
®(B)X,=0O(B)Z,, {Z;} ~ WN(0,X),

where ®(2) = Iy —~®1z— - —®,2° and O(2) = I+ O12+ - + O 427 are
matrix-valued polynomials. Note that each component of the matrices ®(z)
and ©(z2) is a polynomial in z with real coefficients and degree less than p, g,
respectively.
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Example 10.2 Seiting p =1 and q = 0 gives the defining equation

of a multivariate AR(1) series {X:}. By using a similar argument in the
univariate case, we can express X, as

X, =) ®Z,;
3=0
if all the eigenvalues of ®1 are less than 1 in absolute value, that is,
det(I — 2®1) #0 for all z € C such that 2| < 1.

In this case we have an MA(co) representation with C; = ®7. O

10.3.1 Causality and Invertibility

Definition 10.5 (Causality) An ARMA(p,q) process ®(B)X, = O(B)Z;
is said to be causal if there exist matrices {¥;} with absolutely summable
components such that

X,=) W;Z,_; forallt.
j=1
Causality is equivalent to the condition
det(®(z)) #0 for all 2 € C such that |z| < 1.

The matrices ¥; are found recursively from the equations

oC
T,=0;+> &Y, 4, j=01,...,
k=1

where we define ©g = I, ®; = 0 for j > ¢, ®; =0 for j > p and ¥; = O for
Jj<o0.

Definition 10.6 (Invertibility) An ARMA(p, q) process ®(B)X,; = O(B)Z,
is said to be invertible if there exist matrices {IL;} with absolutely summable
components such that

o0
Z,=) I;X, ; forallt.
Jj=0
Invertibility is equivalent to the condition

det(®(z)) #0 for all z € C such that |z] < 1.
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The matrices II; are found recursively from the equations

I =—®; - Y Ol 4, j=01,..,
k=1
where we define ®5 = —I;, ®; =0for j >p, ©;, =0for j >¢q,and IT; =0
for j < 0.
10.3.2 Identifiability

For the multivariate AR(1) process in Example 10.2 with
0 0.5
Q1 - ( O O ) L

o0
X,=) ®Z,
=0

we get

so ¥; = i
(th) ( 0 05 ) (Xt—-l,l) N (Ztl)
X2 0 0 Xe_1,2 Zto
_ ( 0.5X:—12+ Zn ) _ (Ztl) n ( 0 05 ) (Zt—l,l)
Ziz Zi2 0 0 Zi-12
= Zi+®.Z,,

li.e., {X:} has an alternative representation as an MA(1) process]. As a con-
clusion, the data can be represented as either a VARMA(1,0) or a VARMA(0,1)
model.

More generally, consider a VARMA(1,1) model of the form

X, =®X, 1+ Z,+0OZ;_4,

where ® = ( g a-}(;m ) and © = ( g —(;n ) It can easily be seen that

(I - ®B)~! = (I + ®B), so that the MA representation of X is

X, = (I-®B)"'1+©B)Z,
= (I+®B)(I+©B)Z,

0
= Zt+(0 g)zt_l.

For any given value of m, the given VARMA(1,1) model leads to the preceding
MA(1) representation. In other words, this MA(1) equation corresponds to
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an infinite number of VARMA(1,1) models with ® = ( 8 a—gm ) and

8 ——(;n . Moreover, each of these VARMA(1,1) models is always
causal and invertible. Consequently, it is not always true that we can identify
a VARMA model uniquely from a given MA(co) representation.

Further restrictions need to be imposed, and details on these issues are be-
yond the scope of this chapter. Interested readers may find further discussion
in Liitkepohl (1993). From now on we shall assume that a convenient form of
a VARMA model has been established and we shall proceed with our analysis
based on this form.

e =

10.4 VECTOR AR MODELS

Consider a vector AR (or VAR) time series model
Xi=v+®, X, 1+...+ ‘I)pXt—p + Z;,

with Z; ~ WN(0, X). Note that v = (v1,...,v) a fixed vector of intercept
terms allowing for the possibility of a nonzero mean E(X,). First consider a
VAR(1),

Xi=v+ @1Xt_1 + Z;.

If this generation mechanism starts at time ¢t = 1, we get
X = v+9H3,X¢o+2,

X2 V+‘I)1X1+Zz=V+¢1(V+Q1XO+21)+Z2
(I +®)v+82Xo+ 8,2, + 2,

i

t—1
Xe = (Ie+® 4+ 87w+ 8 Xo+ ) 2.
i=0

Continuing with this process into the remote pass, we may write the VAR(1)
process as
o0
Xi=p+ ZQ’iZt—ia
=0
where the mean vector of X, E(X;) =p=v+ ®1v + @fu + ... if ®, has
all of its eigenvalues less than 1 in absolute value.

Since the condition on the eigenvalues of the matrix ®, is of importance,
we call a VAR(1) process stable if

det(Ik - z<I)1) #0 for |z| <1.
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Note that this is equivalent to the statement that the eigenvalues of ®; are
less than 1 in modulus since the eigenvalues of ®, are defined to be the values
A satisfying the equation det(®1 — AI;) = 0. For a general VAR(p) process,
we can extend the previous discussion by writing any general VAR(p) in a

VAR(1) form. Specifically, we can write

$, P
Xt v I): 02
~ Xt—l - 0 ~ 0 I
X = . , b= D, = k
Xi-pt1 0 0 0
and
Zz,
- 0
Zt: . ]
0

&, &,
0 0
0 0
I, 0

where X, &, and Z, are of dimensions kp x 1 and ® is kp x kp. Then the

original VAR(p) model,

Xg =V+§1Xt_1 +--- +‘I>pXt_p+Zt,

can be expressed as

X
. X
X: = )
Xt—p+1
v P, P, ®,, @,
0 I, 0 ... 0 0
= : + : O : :
0 0 0 I, 0

= D+®X, ,+Z,.
Following the foregoing discussion, X, will be stable if
det(Ix, — 2®) # 0 for |z < 1.
In this case, the mean vector becomes
p=E(X) =T - 2)7'v,
and the autocovariances are

P =Y 87 5, @Y,

i=0

X
X o

X p
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where EZ = E(ZZQ) Using the k x kp matrix
J = (I,0,...,0),

the process X; can be obtained by setting X; = JX t. Since {Xt} is a
well-defined stochastic process, so is {X}. Its mean vector is E(X¢) = Jpu,
which is constant for all ¢, and its autocovariances I' x (h) = JT X (h)J' are
also time invariant.

Further, one can show that

det(It, — 2®) = det(I — ®12 — - -- — B,2P),

which is called the reverse characteristic polynomial of the VAR(p) process.
Hence, the VAR(p) process is stable if its reverse characteristic polynomial
has no roots on the complex unit circle. Formally, a VAR(p) process{ X} is
said to be stable if

det(I — 12—+ — Pp2P) #0 for 2| < 1.

This condition is also called the stability condition and it is easy to check for
a VAR model. Consider, for example, the two-dimensional VAR(2) process

05 0.1 0 0
Xe=v+ ( 04 05 )XH+ ( 025 0 )X““Z"

Its reverse characteristic polynomial is

det 1 0) (05 01 Y OOzz
o1 04 05 025 0
= 1 -z + 0.212% - 0.0252%.
The roots for this polynomial are

21 = 1.3, 29 =3.55+4.26¢, and z3 = 3.55 — 4.261.

You can find the roots using the SpLUS /R command

> polyroot(c(1,-1,0.21,-0.025))
[1] 1.299957+9.233933e-151 3.550022+4.262346e+001i
[3] 3.550022-4.262346e+001

Note that the modulus of 23 and 23 is |22| = |z3| = V/3.55% + 4.262 = 5.545.
Thus the process satisfies the stability condition since all roots are outside the
unit circle. A common feature of stable VAR processes (when you plot them
with, say, tsplot in SPLUS and ts.plot in R) is that they fluctuate around
constant means, and their variability does not change as they wander along.
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10.5 EXAMPLE OF INFERENCES FOR VAR

Most of the inferences on estimation and testing for VAR models are similar
to those of the univariate case, although notations for writing down the esti-
mator can become notoriously complicated. Again, we shall not discuss these
details but mention that most of the estimation methods are still likelihood
based. As in the univariate case, computations of likelihood procedures can be
very tricky when MA parts are incorporated, and this problem becomes more
severe for VARMA models. Notice that at the writing of this book, SPLUS
only supports VAR models. Although this is somewhat limited, it should be
pointed out that VAR models work quite well in many of the financial and
econometric applications. Consequently, the rest of this section is devoted to
an example to illustrate the VAR features of SPLUS.

Consider a three-dimensional system consisting of quarterly seasonally ad-
justed German fixed investments disposable income, and consumption expen-
ditures in billions of Deutsche marks. The data are from 1960 to 1982 but we
will only use data up to 1978 for the analysis. This data set can be found in
Liitkepohl (1993) and is also stored on the Web page for this book under the
file name weg.dat. The actual data file consists of five columns. The first
column contains the year, the second the quarter, and columns 3 through 5
contain the actual data.

We first read the data in SPLUS using the read.table command, and let
SpLUS know that we are dealing with time series data using the rts command
as follows:

> weg<-read.table(’weg.dat’,row.names=NULL)
> weg

Viv2a v V4 Vb
1 1 180 451 4156
2 2 179 465 421
3 3 185 485 434
4 1960 4 192 493 448
5 1 211 509 4589
6 2 202 520 458

75 1978 675 2121 1831

3
76 1978 4 700 2132 1842
77 1979 1 692 2199 1890
78 1979 2 759 22563 1958
79 1979 3 782 2276 1948
80 1979 4 816 2318 1994
81 1980 1 844 2369 2061
82 1980 2 830 2423 2056
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83 1980 3 853 2457 2102
84 1980 4 852 2470 2121
85 1981 1 833 2521 2145
86 1981 2 860 2545 2164
87 1981 3 870 2580 2206
88 1981 4 830 2620 2225
89 1982 1 801 2639 2235
90 1982 2 824 2618 2237
91 1982 3 831 2628 2250

92 1982 4 830 2651 2271
> WEG<-weg[1:76,]
> invest<-rts(WEG$V3,start=c(1960,1) ,freq=4)
> income<-rts(WEG$V4,start=c(1960,1) ,freq=4)
> consum<-rts(WEG$V5,start=c(1960,1) ,freq=4)
> invest
1 2 3 4

1960: 180 179 185 192
1961: 211 202 207 214
1962: 231 229 234 237
1963: 206 250 259 263
1964: 264 280 282 292
1965: 286 302 304 307
1966: 317 314 306 304
1967: 292 275 273 301
1968: 280 289 303 322
1969: 315 339 364 371
1970: 375 432 453 460
1971: 475 496 494 498
1972: 526 519 516 531
1973: 573 551 538 532
1974: 558 524 525 519
1975: 526 510 519 538
1976: 549 570 559 584
1977: 611 597 603 619
1978: 635 658 675 700
start deltat frequency

1960 0.25 4

We plot the series in Figure 10.1 and their autocorrelations in Figure 10.2.
Notice that in Figure 10.2, the diagonal elements are the ACFs of the uni-
variate series of each component, and the superdiagonal plots are the cross
ACFs between the components. For the subdiagonal plots, observe that the
lags are negative. These are the plots of R;;{—h), which according to part
1 of Theorem 10.1, equal R;;(h). This provides a way to get hold of R;;(h).
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et in\restment

ncome
- consumption

1960 1965 1970 1975
Time

Fig. 10.1 German investment, income, and consumption data.

For example, the (2,1) entry of Figure 10.2 represents Rja(—h) = Rai(h).
Therefore, R2;(13) = Ri12(—13) = 0.058.

>
>
>
+
>

weg.ts<-ts.union(invest,income,consum)

tsplot (weg.ts)

legend (1960,2000, legend=c("income", "consumption”,
"investment"),lty=1:3)

acf (weg.ts)

The original data have a trend and are thus considered nonstationary. The

trend is removed by taking first differences of logarithms:

V V V V V V V VYV

dlinvi<-diff (log(invest))

dlinc1<-diff (log(income))

dlcon1<-diff (log(consum))

par (mfrow=c(3,1))

tsplot(dlinvl) ;title("investment")
tsplot(dlincl);title("income")
tsplot(dlconl) ;title("consumption")
dweg.ts<-ts.union(dlinvl,dlincl,dlconi)
acf (dweg.ts)
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The time series plots of the first differences as well as the sample autocor-
relation functions are shown in Figures 10.3 and 10.4, respectively.

We fit a VAR model using the ar function, which uses the AIC criterion
to select the order.

> weg.ar<-ar(dweg.ts)
> weg.ar$aic
[1] 12.536499 7.375732 0.000000 12.605591 17.017822
[6] 30.794067 35.391541 50.271301 54.909058 66.699646
[11] 71.657837 80.051147 92.501953 93.377502
> weg.ar$order
(1] 2
> weg.ar$ar[i,,]
[,1] [,2] [,3]
[1,] -0.309421629 0.1552022 0.8746032
[2,] 0.041505784 -0.1069321 0.2424691
[3,] -0.003082463 0.2385896 -0.2722486
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Fig. 10.2 Sample ACF of German data.
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investment

1960 1986 w10 1975

income

1960 1965 1970 1975
Time

consumption

L

1960 1085 1870 078
Time

Fig. 10.3 First differences of logarithms of German investment, income, and consump-
tion.

> weg.ar$ar[2,,]

[,1] [,2] [,3]
[1,]1 -0.15150616 0.14152186 0.83874440
[2,] 0.04778249 0.03499804 -0.02906964
[3,] 0.03408687 0.35225770 -0.03116566
> weg.ar$var.pred

[,1] [,2] [,3]
[1,] 2.156003e-03 7.242693e-05 1.267914e-04
[2,] 7.242693e-05 1.486544e-04 6.316167e-05
[3,] 1.267914e-04 6.316167e-05 9.070559e-05

This means that the parameter estimates are

. —-0.309 0.155 0.875 R —0.152 0.142 0.839
®, = 0.042 -0.107 0242 |, &, = 0.048 0.035 —0.030
—-0.003 0.239 -0.272 0.034 0.352 —-0.031

and
2.1560036-03 7.242693e-05 1.267914¢-04

¥, = 7.242693¢-05 1.486544¢-04 6.316167¢-05
1.267914e-04 6.316167e-05 9.070559¢-05
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The residuals can be seen in Figure 10.5.

> tsplot(weg.ar$resid)
> legend(1975,-.10,legend=c("income", "consumption","investment"),
+ 1ty=1:3)

In the case of R, replace the commands “rts” and “tsplot” in SPLUS by
the commands “ts” and “ts.plot” respectively in R. The other commands in
R are exactly the same as in SPLUS .

Finally, using the fitted model for the data from 1960 to 1978, we can
attempt to predict the next eight quarters using the function pred.ar, which
is presented in the SPLUS help window for ar. Figure 10.6 shows the predicted
values (solid) and the actual values (dotted lines).

# function to predict using an ar model:
# ahead gives the number of predictions to make

pred.ar <- function(series, ar.est, ahead = 1)

£|H|]|1 — ‘H A
ey [T
ol 1 ) .|‘|

el o S |.I|1‘,7
Ll \

T ]]|1 I'I"“II Ill1l llll
=u1x_r- 1 = —-—= — |

Fig. 10.4 Sample ACF of the differenced data.
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Fig. 10.5 Time series plot of residuals.

order <- ar.est$order
series <- as.matrix(series)
pred.out <~ array(NA, dim = c(order + ahead,
ncol(series)),dimnames = 1list(NULL,
dimnames(series) [[2]]))
mean.ser <- apply(series, 2, mean)
ser.cent <- sweep(series, 2, mean.ser)
pred.out[seq(order), 1 <- ser.cent[rev(nrow(
series) - seq(order) + 1), 1]
for(i in (order + 1):mrow(pred.out)) {
pred.out[i, ] <- apply(aperm(ar.est$ar,
c(1, 3, 2)) * as.vector(pred.out
[i - seq(order), 1), 3, sum)
}
sweep(pred.out[ - seq(order), , drop = F1, 2,
mean.ser, "+")
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MULTIVARIATE TIME SERIES
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> weg.pred<-pred.ar(dweg.ts,weg.ar,ahead=8)

Fig. 10.6 Predicted values for German series.

> weg.pred

dlinvil
[1,] -0.008301602
[2,] 0.011163449
[3,] 0.021437457
[4,] 0.013896021
[5,] 0.018114067
[6,1] 0.017550547
[7,] 0.017769750
[8,] 0.018156437

In the case of R, we use the following command

QOO OO0 OO

dlincl

.02043956
.02080164
.01790787
.02104020
.02035429
.02044569
.02073731
.02061101

OO OO0 OC OO0

dlconl

.02162485
.01499163
.02019181
.019051756
.01930151
.01993871
.01968315
.01981476

>weg.pred<-predict(weg.ar,n.ahead=8)
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10.6 EXERCISES

1. Consider the German economy example discussed in Section 10.5.

(a) Fit a univariate time series to each component in this data set.

(b) Combine the three fits that you obtained from part (a) and form
a three-dimensional multivariate time series by stacking them to-
gether. How do you compare this model with the VAR(2) used in
Section 10.57

(c) Perform a forecast based on your combined series and compare
your result with those given in Section 10.5.

2. (a) For any matrix ® such that 2 = 0, show that (I — ®B)~! =
(I + ®B), where B is the backshift operator.

(b) Establish the reverse characteristic polynomial result for the case
k = 2 and p = 2; that is, for a VAR{2) model (I3 — ®B —
®,B*) X, = Z,, show that

det(I; — ®12 — ®222) = det(Iy — 2$),

= (@ Py
- (7))
3. In the United States of Wonderland, the growth rates for income (GNP)

and money demand (M2) and an interest rate (IR) are related in the
following VAR(2) model:

GNP, 2 07 01 O GNP,_,
M2, = 1 0 04 0.1 M2, 4
IR, 0 09 0 08 IR, ;
GNPt_z th
01 01 M2 5 |+ | Za |,
IR, Z3
where

026 003 0 05 01 O
Yz=1 003 009 0 =PP, P= 60 03 0O .
1

where

0 0 038 0 0 09

(a) Show that the process X; = (GNP;, M2;,IR;)' is stable.
(b) Determine the mean vector of X;.
(c) Write the process of X; in the X, VAR(1) form.
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State Space Models

11.1 INTRODUCTION

State space representations of time series have had a long history. They have
found applications in diverse disciplines. Under a state space setting, an
extremely rich class of time series, including and going well beyond the linear
models considered in this book, can be formulated as special cases of the
general state space model defined below. Early accounts of state space models
and the associated Kalman filter recursions can be found in control engineering
literature [see, e.g., Kailath (1980) or Hannan and Deistler (1988)]. A recent
account of time series analysis that emphasizes the state space methodology is
given in Shumway and Stoffer (2006), see also Chatfield (2003) and Durbin
and Koopman (2001). Other references for state space frameworks in the
econometric literature are Harvey (1993) and Aoki (1990). A very general
Bayesian state space framework under the context of the dynamic linear model
is given in West and Harrison (1997).

11.2 STATE SPACE REPRESENTATION

A state space model of a given time series {possibly multivariate) {Y,: ¢ =
1,2,...} consists of two equations: the observation equation and the state
equation. The observation equation relates the observed data {Y;} to the
underlying states {X; : ¢t =1,2,...} (most likely unobservable or latent) that

143
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govern the system via
Yt :GtXt+W¢, (111)

where {W;} ~ WN(O, R;) represents the observation errors and G; is a se-
quence of matrices. The state equation describes the evolution of the states
via

X =FRX:+V,, (11.2)

where {F;} is a sequence of matrices and {V;} ~ WN(0, Q;) denotes the errors
incurred in describing the states. It is usually assumed that the observation er-
rors and the state errors are uncorrelated [i.e., E(W,V,) = 0 for all s and ¢].
To complete the specification, the initial value of X, is assumed to be uncor-
related with all the errors {V;} and {W,}.

Definition 11.1 A time series {Y:} has a state space representation if there
exists a state space model for {Y ;} as specified in equations (11.1) and (11.2).

Remarks

1. The uncorrelatedness assumption between the errors can be relaxed.
Further, one can include a control term Hyu, in the state equation (11.2)
to account for exogenous information. In an ARMA context, such an
inclusion is usually known as an ARMAX model.

2. In many applications, the observation and system matrices {F;}, {G:},
{R:}, {Q:} are independent of time, resulting in a time-invariant system.
We deal only with time-invariant systems in this book.

3. By iterating the state equation, it can easily be seen that

X: = fX1,Vi,..., Vi),
Yt = gt(Xl)Vla""Vt—laWt)7

for some functions f; and g:. In particular, we can derive

E(V,X') =0, E(V,Y) =0, 1<s<t,
E(W:X!)=0,1<s<t, and E(W,Y,)=0,1<s<t.

The usefulness of a state space representation is that it is highly flexible
and can be used to represent a large number of time series models. As given,
neither { X} or {Y;} is necessarily stationary. Whenever a simple state space
representation can be found, we can study the behavior of the states {X;}
from the observations {Y;} via the observation equation (11.1). Notice that
the states and the observations do not have to be completely unrelated. Past

observations can be components in a state. To illustrate this point, consider
an AR(p) model.
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Example 11.1 Let {Y;} be a causal AR(p) model ¢(B)Y; = Z;. To express
it in a state space representation, define Xy = (Yi—pt1,Yi—pt2,..., Y1) and
Zt+l = (0, AN ,0, Zt+1)'. Then

0 1 0 0
0 0 1 0
X1 = : : Do [ Xt Zen
0 0 0 R |
$p Pp_1 Gp—2 -+ 1
= FX;+Z¢y,,
Y} = (0’ 'aO’l)Xt

These equations have the required forms of (11.1) and (11.2). In this case,
W: =0 and V= Z;y1. The causality condition is equivalent to the condi-
tion that the state equation is stable (i.e., the eigenvalues of the state matriz
F all lie inside the unit disk). g

As a second example, let us consider the structural model, which permits
random variation in the trend process. Recall that in Chapter 1, we decom-
posed a time series into Y; = M; + W;, where M, represents the trend.

Example 11.2 Consider the random walk plus noise model represented by

}[t = Mt + Wt, Wt ~ WN(O,O'?U),
My =M +V,, Vi~WN(0,02),

with the initial value My = my fized.

Notice that this model is already written in a state space representation.
The trend component is unobservable and follows a random walk model, while
the observation is expressed in a signal plus noise equation. This is sometimes
known as a local level or random walk plus noise model. The signal-to-noise
ratio is defined as

SNR =

EQN lcqm

b

which is an important factor in determining the features of the model. The
larger this factor is, the more information can be gathered about the signal M;.
On the other hand, when o2 is zero, M, is constant and the model reduces to
a trivial constant mean model. If we extend the trend equation to incorporate
a linear trend, we have

My = M 1+Bi1+Vi,
Bt = Bt—l + Ut—17 Ut ~ WN(O,UE,)’
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where M, represents a local linear trend with slope B;.1 at timet — 1. To
write this equation in a state space form, define Xy = (M, By)'. Then

1 1
X1 = (0 I)Xt-i‘vt,

where Vi, = (V;,Uy)'. This constitutes the state equation. For the observation
equation, we have

Y; = (IaO)Xt + th

where we assume {X1,U1, V1, Wh,Us, Vo, Ws, ...} to be an uncorrelated se-
quence of random variables. In this model,

_ 11 _ _ 0'12) 0 _ 2
F-(O 1),G—(I,O),Q—(O Uﬁ>,andR—aw. O
These two examples demonstrate the versatility of the state space formu-
lation. In general, we can write an ARIMA(p,d, ¢) model or any randomly
varying trend plus noise component models in state space forms, although
finding one that is convenient to work with could be a tricky exercise.

11.3 KALMAN RECURSIONS

The fundamental problems associated with a state space model can be collec-
tively classified into one of the following three categories, which are concerned
with estimating the state vector X; in terms of the observations Y;,Ys,...
and an initial value Y. Estimation of X; in terms of

1. Yg,...,Y;_1 defines a Kalman prediction problem.
2. Yy,..., Y, defines a Kalman filtering problem.
3. Yo,...,Y,(n >1) defines a Kalman smoothing problem.

Each of these problems can be solved by using an appropriate set of Kalman
recursions. Usually, Y is chosen to be equal to the vector (1,...,1). Define
P(X;) = P(X;|Yq,...,Y,) = s_p{Yo,...,Yg}Xi’ i = 1,...,v as the best
linear predictor of X; in terms of Y, ..., Y. Further, introduce the notation

Pt(X) (Pt(Xl)a"-aPt(X'v))”
X, = P, (Xt), the one-step-ahead prediction,

Q: E[(X: — X¢)(X: - X4)],

where ; denotes the one-step-ahead prediction error covariance matrix.
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Theorem 11.1 (Kalman Prediction) For a given state space model, the
one-step-ahead predictors and their error covariance matrices are determined
uniquely by the initial conditions

X, = P(X1|Yo), & =E[(X,-X))(X,-X1)],
and the recursions fort=1,2,...:

X1 = FEX.+6,A71Y,-GX,),
FO.F, + Q. — ©.A7'6),

Qit1

where
At - GtQtG; + Rt, @t = FtQtGi,

and A; 1 denotes the generalized inverse of the matriz A,.

Theorem 11.2 (Kalman Filtering) The filtered estimates Xy, = P;(X:)
and their error covariance matrices Q) = E[(X; — )A(t]:)(Xt - X,,t)’] are
determined by the relations

P(Xy) = P X, + UGIATHY, — G X )

and
Qe = U — UGIAT' GO,

Theorem 11.3 (Kalman Smoothing) The smoothed estimates Xyn, =
P,(X ) and the error covariance matrices Qyn = B[(X ¢~ X 4n) (Xt — Xyjn)']
are determined for fired t by the following recursions, which can be solved suc-
cessively forn=t,t+1,...:

Po(X:y) = Poa(Xy)+QUnGLAZN Y, — GuXy),
Qt,‘n+1 = Qt,n[F‘-n - @nAglGn]la
Qin = Qo1 — VUnGrAL G,

where Qi , = E[(X: — X)X, - Xn)’] with initial conditions P;_1(X:) =
X. and Qs = Que—1 = Q4 being determined from the Kalman prediction
TECUTSIONS.

Proofs of these theorems can be found in Brockwell and Davis (1991).
Although tedious, these results provide the necessary algorithms to compute
prediction in an on-line manner, and they have been programmed in many
packages, including SpLUS. Furthermore, by combining these algorithms with
Gaussian likelihood, we can compute the MLE very efficiently. Consider the
problem of finding the parameter  that maximizes the likelihood function for
given Y,...,Y,. Let the conditional density of Y, given (Y;_1,...,Y ) be
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filY|[Y;:_1,...,Y0). The likelihood function of Y,...,Y, conditional on
Y can be written as

L(O,Y1,....Y,) = [[ £(YiYiy,..., V1),
t=1

Assumir}g all the errors to be jointly Gaussian and letting I; =Y~ P,_,Y; =
Y :—GX, as the one-step-ahead prediction error with covariance matrix A; =
E(I.I}), the conditional density can be written as

1
Fe(Y Y eo,..., Y1) = (2m)"/2(det A,)~?exp (—§I§A{11t> :

Therefore, the likelihood function of the observations Y;,...,Y, is given by
~1/2
n 5 L ae
L(8,Y1,...,Y,) = 2m) ™2 | [[ A, exp —-Q-ZI;.A]. '
j=1 j=1

In particular, when w =1 (i.e., the series is univariate), we have

—1/2
n

n—1
—n 1 ¥
L®,Yy,...,Y) = @m) 2 [ I v exp | —3 > (Y=Y /v |
L

i=1

where f/; = Pj_1(Y}) denotes the one-step-ahead prediction of ¥; with ¥1=0
and v; = E(Yj4, — f’j+1)2 denotes the variance of the one-step-ahead pre-
diction (innovation) error. Using Kalman filtering, both YJ and v; can be
updated recursively. This algorithm has been used in SPLUS to evaluate the
MLE for an ARMA model.

In general, given the observations, an initial value Yy, and a starting value
0y, the likelihood function can be maximized numerically from the preceding
equation with the aid of the Kalman recursions. Furthermore, once the MLE
is found, we can compute forecasts based on the state space representation
and mean square errors by means of Kalman predictions.

11.4 STOCHASTIC VOLATILITY MODELS

One of the applications of a state space representation in finance is in modeling
heteroskedasticity. In addition to GARCH models, stochastic volatility mod-
els offer a useful alternative for describing volatility clustering. It is not our
intention to provide a comprehensive account of the developments of stochas-
tic volatility models here; interested readers may find detailed discussions
about various aspects of stochastic volatility models in Ghysels, Harvey, and
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Renault (1996) and Taylor (1994). Rather, our aim here is to introduce the
stochastic volatility model through the state space representation.

In stochastic volatility models, the instantaneous variance of the series
observed is modeled as a nonobservable or latent process. Let {z:} denote
the returns on an equity. A basic setup of a stochastic volatility model takes

the form
zy = 0ty
11.3
{ gy = exp(v/2), ( )

where {£:} is usually assumed to be a sequence of independent standard nor-
mal random variables, and the log volatility sequence {v;} satisfies an ARMA
relation

¢(B)vy = 8(B)n,. (11.4)

Here, {n;} is a Gaussian white noise sequence with variance 7, ¢(-) and 6(-)
are polynomials of order p, g, respectively, with all their roots outside the unit
circle and with no common root, and B is the backshift operator Bx; = z4_1.
Conceptually, this represents an extension with respect to GARCH models,
since the evolution of the volatility is not determined completely by the past
observations. It also includes a stochastic component and allows for a more
flexible mechanism. Unfortunately, since {o:} is not observable, the method
of quasi maximum likelihood cannot be directly applicable. By letting y; =
log z2, u; = log &2, and taking the log and squaring equation (11.3), we have

Yo = Urtoug (11.5)
¢(Bve = 6(B)n. (11.6)

In this expression, the log volatility sequence satisfies a linear state space
model with state equation (11.6) and observation equation (11.5), while the
original process {o:} follows a nonlinear state space model. To complicate
matters further, the observation error u; = log£? in (11.5) is non-Gaussian.
Consequently, direct applications of the Kalman filter method for linear Gaus-
sian state space models seem unrealistic. Several estimation procedures have
been developed for SV models to circumvent some of these difficulties. Melino
and Turnbull (1990) use a generalized method of moments (GMM), which is
straightforward to implement but not efficient. Harvey, Ruiz, and Shephard
(1994) propose a quasi maximum likelihood approach based on approximat-
ing the observation error {u;} by a mixture of Gaussian random variables
which renders (11.5) and (11.6) into a linear Gaussian state space setup. A
Bayesian approach is taken by Jacquier, Polson, and Rossi (1994). Kim,
Shephard, and Chib (1998) suggest a simulation-based exact maximum likeli-
hood estimator, and Sandmann and Koopman (1998) propose a Monte Carlo
maximum likelihood procedure. Although each of these methods is reported
to work well under certain conditions, it is difficult to assess their overall
performances across different data sets. Alternatively, the SV model can be
considered as a discrete-time realization of a continuous-time process.
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In summary, although stochastic volatility models have natural links to
state space representations, they are nonlinear and non-Gaussian state space
forms. As such, it takes more work to estimate and test for an SV model.
Further developments about estimating SV models and long-memory effects
can be found in Chan and Petris (2000). From a pure modeling perspective,
an SV model seems to be more flexible, but the lack of available softwares
for SV models also makes it less readily applicable in practice. Empirical
evidence shows that both GARCH and SV models perform similarly, and it
is not clear that one form can be uniformly better than the other. Perhaps it
is for this reason that GARCH models have been receiving considerably more
attention at the user’s end.

11.5 EXAMPLE OF KALMAN FILTERING OF TERM STRUCTURE

In this example we illustrate how to use Kalman filters in estimating the simple
Vasicek term-structure model discussed in Babbs and Nowman (1999). In
the basic framework, consider the instantaneous spot rate r(t) described by

J
r(t) u(t) = X;(t),
=1

de(t) = —€ij(t)dt + O'J‘de (t)

For a fixed j, the discretized version of the second equation can be written as

X = (1 — %) Xk—1 + N

~ e Xy 1 + g,

where n; ~ N(0, V2). In this setting, X1,..., X represents the current effects
of J streams of economic “news” whose impact is described by the state
equation. Here, we simplify the case where W; denotes independent Brownian
motions, although this assumption can be relaxed to incorporate correlations
among different components as studied in Babbs and Nowman. From now on,
we further restrict our attention to a one-factor model, J = 1, with constant
parameters [i.e., u(t) = p,0; = 0,§; = & and W; = W]. If we denote the
market price of risk associated with W as 6, the resulting pricing formula for
B(M,t), the price of a unit nominal pure discount bond maturing at time
M, is given in equation (5) of Babbs and Nowman. Using the fact that the
theoretical interest rate

R(M,t) = —%logB(t+'r,t),

where 7 = M — t denotes the residual term to maturity, and equations (5),
(14), and (15) of Babbs and Nowman, we can write

R(M,t) = Ao(7) — Ai(7)X(t),
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where

Ao(t) = R(o0) —w(r), (11.7)
H(¢r), (11.8)
R(oo) = u+6v—12%/2,

b
[
—~
-
N

Il

2

w(t) = H(¢T) (01} - %) + %H(2ET)U2,
g
Hz) = 1 —me

When we discretized the equation for r(t) and X (¢), a state space formula-
tion resulted, with the following observation and system equations. For each
i=1,...,N,

Ry = Ao(m) — A1(m) Xk + €u,
Xp = ettt o 4oy,

where €;; ~ N(0,02(¢)) and nx ~ N(0,V?(¢))) denote the observation and
system noise, respectively. In this setting, the unknown parameters are de-
scribed collectively by a hyperparameter ¢ = (u, 8, £, 0)’, so that the variances
of both of the observation and system errors are functions of 1. Also, note
that the state X is unobservable and that the only observable component
is the interest rate R;;, where k = 1,...,n denotes the time of the obser-
vations and ¢ = 1,..., N denotes the dimension of the observation vector
Ry = (Rik, ..., Rnk)’. This framework provides a good candidate for making
use of the Kalman filter algorithm to estimate the parameters ¥ = (u, 8,¢,0)".
Specifically, consider the following spot rates example (see

http://economics.sbs.ohio-state.edu/jhm/ts/mcckwon/mccull.htm

for a detailed description of the data). The data are spot interest rates for
eight maturities for each month from August 1985 to February 1991 (so that
n = 67 months in total). These are basically points on the zero-coupon yield
curve. The eight maturities chosen are for three and six months; one, two,
three, five, seven, and ten years; and N = 8. The data are stored in the file
zeros.dat on the Web page for this book. In this example, n = 67 and N =
8, with R;; denoting the three-month rates for k = 1,...,67, Ra; denoting

the six-month rates for ¥ = 1,...,67, ..., and Rg; denoting the ten-year
rates for k = 1,...,67. Writing it in a vector form, the observation equation
becomes

R =d(v) + Z(Y) Xk + €x,

where d(¢) = (Ao(71), ..., Ao(7s))" and Z(¢) = (A1(71),...,A1(78))" are 8x 1
vectors with Ap and A; defined in equations (11.7) and (11.8), respectively,
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and 7,...,7s denote the residual terms to each maturity. In this equation it
is assumed that ¢; ~ N(0, £(1/)). The state equation is the same as before:

X = e“f(tk—tk—l)xk_l + T,

where n, ~ N(0, V2(3)). With this setting, we can now estimate and predict
the interest rates by means of the Kalman filter recursion. The main idea lies
in writing down the log-likelihood function of all the R’s via the Kalman equa-
tion in a recursive manner and optimize this likelihood function numerically.
Before doing that, we present some basic data summaries in Table 11.1.

Table 11.1 Summary Statistics

r(t) Mean  Stand. Dev.

3-month  6.93597 1.0570630
6-month 7.102134  0.9762329
1-year 7.385955  0.9251570
2-year 7.723090  0.8190899
3-year 7.914313  0.7738133
S-year 8.146104  0.7417155
7-year 8.330224  0.7380349
10-year  8.484090  0.7152038

To get a feeling about the data we can import them into SPLUS as follows:
> zeros_read.table(’zeros.dat’,row.names=NULL,header=T)

By using the following commands, we obtain a figure of the yield curve for
February 91:

> maturity_c(0.25,0.5,1,2,3,5,7,10)

> plot(maturity,zeros$Feb91,type=’b’,xlab="maturity(years)",
+ ylab="rate",axes=F)

> axis(1,at=maturity,labels=as.character(maturity))

> axis(2)

> box(bty = "1")

Unfortunately, SPLUS cannot do much more for us in terms of using the
Kalman filter, so we have to use some other package. There are available
Kalman filter routines in MatLab as well as IMSL, which is a collection of
numerical and statistical libraries written in Fortran, and it can be called
from both Fortran and C. In particular, the KALMN routine performs the stan-
dard Kalman filter, and it can be used in conjunction with the UMINF routine
to obtain maximum likelihood estimates using a quasi-Newton optimization
method. It is stored in the file ims12.f on the Web page for this book.
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The Fortran code follows:

oA o R AR AR KK ok K o KoK ok RS o o o Ko o AR o o R AR Kok A ok R K ok ook
¢ MAIN PROGRAM, CALLS THE SUBROUTINES UMINF AND FUNC
Ck oo o ok ek ok ok R K Sk Ao K R A AR R o o o o Ko o A o o R R Kk o o ok o ok ok
program kalman
integer nobs, nparam
parameter (nobs=67,nparam=4)

integer iparam(7)
real func,fscale,fvalue,rparam(7),param(nparam),xguess
& (nparam) ,xscale(nparam) ,ydata(8,67),r(8,8),covv(8,8)
common ydata,r,covv
external func,uminf,hfun,wfun,rfun
SRR AR AR KR AR A AR AR AR A A AR R AR Rk AR Aok AR ok ok kK kK koK
¢ IMPORT THE DATA AS WELL AS THEIR SAMPLE VARIANCE COVARIANCE
¢ MATRIX
CHF A A A A A AR A AR AR A AR AR AR ok Aok ok Aok oo ok Kok
open(5,file='zeros.dat’)
read(5,*) ((ydata(i,j),j=1,67),i=1,8)

open(50,file=’varcovar’)
read(50,*) ((r(i,j),j=1,8),i=1,8)
SRRk ARk o ok o o ok ok ook e ok ok o ok ko sk o o ok o oK Sk ok o ok ok o ok o ok
c STARTING VALUES FOR THE LIKELIHOOD MAXIMIZATION AS WELL AS
¢ PARAMETERS NEEDED IN UMINF
ook ok ok ok ok kR sk ok ok sk o ook ok ke s ok sk ook o sk ok ok ks ok ko ok sk o ok ok
data xguess/7.0,70.0,15.0,2.0/,xscale/1.0,1.0,1.0,1.0/,
& fscale/1.0/

c
iparam(1)=0
call uminf(func,nparam,xguess,xscale,fscale,iparam,
& rparam,param,fvalue)

G sk o sk ok o ok ok sk ok ok ok ok ook o ok ok oo ko sk ook ok ok o Ko o o ok ok ook o o koo ok ok o ok
¢ STANDARD QUTPUT
AR o AR R R K ok oo ok s sk sk sk K ok ok oo Kok o sk ko ks e e ek o ok oK oK KoK
write(*,x) °
write(*,*) ’* * * Final estimates for Psi * * x?’

write(*,*) ’mu = ’,param(1)
write(*,*) ’theta = ’,param(2)
write(*,*) ’ksi = ’,param(3)

write(*,*) ’sigma = ’,param(4)
write(k,*) 7 ?

write(*,*) ’* * * optimization notes * * * ’
write(*,*) ’the number of iterations is ’, iparam(3)
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write(x,%*) ’and the number of function evaluations is °’,

& iparam(4)
do 30 i = 1,8
write(*,*) ’prediction standard errors = ’, sqrt(covv
& (i,i)
30 continue
end

CRAA A koK oK AR K R o ok R KA o S KoK K K R KRB KA R AR R Ko A e ok
¢ SUBROUTINE FUNC USED BY UMINF
c CALLS KALMN
CHRA AR AR AR R A KR KR AR K A ks sk ok kR R R o ok ok
subroutine func (nparam,param,ff)
integer nparam
real param(nparam), ff

c
integer 1ldcovb,ldcovv,ldq,ldr,1dt,ldz,nb,nobs,ny
parameter (nb=2,nobs=67,ny=8,ldcovb=2,ldcovv=8,1dq=2,
& 1dr=8,1dt=2,1dz=8)
c
integer i,iq,it,n
real alog,alndet,b(nb),covb(ldcovb,nb),covv(ldcovv,ny),
& q(1dq,nb) ,ss,t(1ldt,nb) ,tol,v(ny),y(ny),ydata(ny,
& nobs),r(1dr,ny),z(1dz,nb) ,tau(ny) ,ksi(ny) ,phi
common ydata,r,covv
intrinsic alog
external amach,kalmn,hfun,rfun,wfun
c
data tau/3.0,6.0,12.0,24.0,36.0,60.0,84.0,120.0/
c
t01=100.0*amach(4)
do 51i=1,ny
ksi(i) = param(3)*tau(i)
2(i,1) = rfun(param,4) - wfun(param,4,tau(i))
2(1,2) = -1.0*hfun(ksi(i))
5 continue
¢
covb(1,1) = 0.0
covb(1,2) = 0.0
covb(2,1) = 0.0
covb(2,2) = 1.0
c
do 6 i =1,nb

do 7 j=1,ndb
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q(i,j) = covb(i,j)

continue
continue
b(1) = 1.0
b(2) = 0.0
n=0
ss=0
alndet=0
ig=0
it=0

phi = exp(-1.0*param(3)/nobs)

t(1,1) = 1.0
t(1,2) = 0.0
t(2,1) = 0.0
t(2,2) = phi

do 10 i = 1,nobs
y(1) = ydata(1,1)
y{(2) = ydata(2,1i)
y(3) = ydata(3,1)
y(4) = ydata(4,i)
y(5) = ydata(5,1)
y(6) = ydata(6,1i)
y(7) = ydata(7,1)
y(8) = ydata(8,1)
call kalmn(ny,y,nb,z,ldz,r,1dr,it,t,1dt,iq,q,1dq,tol,
b,covb,ldcovb,n,ss,alndet,v,covv,ldcovv)
continue
ff=n*alog(ss/n) + alndet
return
end

€2k 2k ok 2k 2k ok ok e 3 3 3 o 2 3k 3k ok A o 3 o o ok k3 5k e 3 3k ok 3 sk 3 3k ok ok k sk 3 ok o o ok o ok ke ok ok sk ok e K 3k ok oK ok oK ok oK ok ok ok K

¢ UTILITY FUNCTIONS
Co¥ AR RO K koK ok o o ok ook of oo ok ok sk o s ok 3 sk ok ok KK o o oK Ko o o Ko o ok o Kok ko o KK

real function hfun(x)
real x

hfun = (1 - exp(-x))/x
return
end
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real function rfun(x,n)
integer n
real x(n)

rfun = x(1) + x(2)*(x(4)/x(3)) -0.5%((x(4)**2)/(x(3)**2))
return
end

real function wfun(x,n,tau)
integer n
real x(n),tau

external hfun

real ksit,ksit2

ksit = x(3)*tau

ksit2 = 2.0*ksit

wfun = hfun(ksit)*(x(2)*(x(4)/x(3)) - ((x(4)**2)/(x(3)**2
& ))) + 0.5*hfun(ksit2)*((x(4)**2)/(x(3)**2))

return

end

The output is given below:

* * x Final estimates for Psi * * *
mu = 5.05167

theta = 65.71723

ksi = 44.0575

sigma = 2.03501

* x % optimization notes * * *
the number of iterations is 11
and the number of function evaluations is 30

prediction standard errors = 1.0571

prediction standard errors = .9762429
prediction standard errors = .9251597
prediction standard errors = .8180907
prediction standard errors = .7738137
prediction standard errors = .7417156
prediction standard errors = .7380349
prediction standard errors = .7152039

The estimated values of u = 5.05167, § = 65.7172, and o = 2.03501 are
very close to the results that Babbs and Nowman report (p = 5.94, 8 = 64.83,
and o = 1.32). Our estimated value for £ = 44.0575, however, is somewhat
different from the value reported there (§ = 19.1). There could be many
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reasons for this discrepancy. First, the data sets are different since we do not
use any swaption data in our example. Second, the time periods of the two
different data sets are also different. Nevertheless, we see that the Kalman
filter provides an efficient algorithm to estimate the parameters of a term-
structure model.

11.6 EXERCISES

1. Consider the simple linear regression model
Y= zub+w;, w,~N(0,0%), t=1,2,....

(a) Express this regression model in a state space form. Notice that
the predictor z; is known. Identify all the necessary coefficient
matrices and errors in your state space form.

(b) Let b, denote the least squares estimate of the regression coefficient
b evaluated at time n. By means of direct computation, show that

2\)n = En—l =+ Kn(yn - Zni)n—l)
for an appropriately defined Kalman gain matrix K,, and identify
K,.

(c) Compare your result with the Kalman filter recursions and identify
A,, Gy, and Q.

(d) Show that
var(b,) = (1-Kpz,) var(f;n_l).

Again, compare your formula with the Kalman filter recursions.

2. Consider the local trend model

Y: = M+W,, W,~WN(0,02),
M1 = M;+V;, Vi~WN(0,02).

(a) Show that Y; can be written as an ARIMA(0,1,1) model
Yi=Yi1+ 2, +0Z,_,

for an appropriately chosen noise sequence Z;, where Z; ~ WN(0, 02).
(b) Determine 6 and ¢2 in terms of 02, and o2.

(c) By letting 02 = 8 and 02 = 20, simulate a series of Y; according
to this local trend model.

(d) Perform a time series analysis on the simulated Y;. What conclu-
sions can you deduce?
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3. Let Y; be an ARMA(p, q) model with p =1 and ¢ = 2 defined by

(a)

(c)
(d)

(e)

(1-¢1B)YY; = (1 — 61B ~ 0,B%)Z;, Z; ~ WN(0,0?).

By letting r = max{p,¢+ 1} =3, ¢; = 0 for j > 1, §; = 0 for
j > 2,and 0y = 1, show that X; can be written in a state space form
with the state vector defined by X = (Xs—o, X;_1, X:)’, where X;
satisfies the AR(1) model X; = ¢1X;—1 + Z;. Consider a state
space system with observation equation

Y: = (—0,—61,00) X, (11.9)

and state equation

0 1 0 0
.Xt+1 - 0 0 1 Xt + 0 Zg+1.
¢3 ¢2 ¢ 1

Identify the system matrices F,G,R, and . Show that the Y}
defined by equation (11.9) follows the ARMA(1,2) model given;
that is, show that Y; actually satisfies

(1-¢B)Y; =(1-6,B ~6,B*Z,.

Alternatively, let m = max{p,q} = 2, ¢; =0 for j > 1, and let X,
be a two-dimensional state vector that satisfies the state equation

0 1
Xt+1=<¢2 ¢l )Xt+HZt,

where H = (1,%2)’, ¥1, and 1), are the coefficients of z and 22 in
the expansion of (1 — 61z — 6222)/(1 — ¢12). Let

YE - (l,O)Xt + Zt.

Solve for H in terms of ¢1, 81, and 62 explicitly.

Identify the system matrices F' and G and deduce that F? —¢; F =
0.

By writing
X = FX+HZ,

Y = GX:+Z, (11.10)
show that the Y; defined in this way actually follows an ARMA(2,1)
model; that is, deduce that the Y; defined in equation (11.10) sat-
isfies

(1-¢B)Y; = (1 —6,B - 6,B*Z,.
This is known as the canonical observable representation of an
ARMA process.

Which of the two state space formulations in parts (a) and (b)
would you prefer? Comment briefly.
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Multivariate GARCH

12.1 INTRODUCTION

Based on the discussions about multivariate ARMA models, it becomes very
natural to consider modeling the volatility process in a higher-dimensional
situation. So far, we have only considered the volatility of single asset returns
and have tried to model the volatility process in terms of a univariate GARCH
model or a univariate stochastic volatility model. Recall that for a univariate
GARCH, the underlying equation is governed by

Xt = Ot€t, €t~ WN(O, 1),

where 07 = E(X?|F:-1) denotes the conditional variance that satisfies the
equation

g P
ol=a,+ Z o X? + Z 5]-0?_]-.

i=1 i=1

In general, we may want to consider a portfolio that consists a vector
of asset returns whose conditional covariance matrix evolves through time.
Suppose that after filtering this multivariate series through ARMA mod-
els, we arrive at a portfolio that consists of k assets of return innovations

Xit © = 1,...,k. Stacking these innovations into a vector X, we de-
fine 0i; = var(X,;:|F:—1) and o5, = cov(Xi, Xj¢|F—1). In this case,
3; = [0ij:] denotes the conditional variance—covariance matrix of all the

returns. The simplest generalization of the univariate GARCH(1,1) model

159
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relates the conditional variance-covariance matrix X; to XX ; as follows:

X, =352,
Z, ~ WN(0,I),
E(XtX::IJ:t—l) = Et.

One main difficulty encountered in this equation lies in finding a suitable
system that describes the dynamics X; parsimoniously. Without imposing
further simplifications, it is easily seen that the model will become unmanage-
able rather quickly. Furthermore, the multiple GARCH equation also needs
to satisfy the positive definiteness of X;. To illustrate the key ideas and to
avoid unnecessarily cumbersome notation, unless otherwise specified, we shall
restrict our attention to a multivariate GARCH(1,1) model with k£ = 3 for the
remainder of this chapter.

12.2 GENERAL MODEL

To begin, we introduce the vech operator as follows. Given any square matrix
A, vechA stacks elements on and below the main diagonal of A as follows:

an
a1
a;lz a2 a3
a31
vech | as1 a2 as3 =\ .
22
a3y asz ass
asz2
a33

In general, if A is an m x m matrix, vech(A) is an m(m + 1)/2-dimensional
vector. The vech operator is usually applied to symmetric matrices in order
to separate elements only. With this notation, we can model X; as follows:

vech(2;) = w + ¥vech(X,—1) + Avech(X_ 1 X;_;). (12.1)

Note that X; and Z; are 3 x 1 vectors, w is a 6 x 1 vector, and ¥ and A are
6 x 6 square matrices. The total number of parameters in this model is

=T8.

0 [k(k;— 1)]2+ k(k2+1)

Even for moderate k, it is clear that this model can become very complicated.
Certain restrictions need to be imposed on (12.1) to reduce the number of
parameters and to ensure that X is positive definite.
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Example 12.1 To get an idea as to how the dynamics of volatilities are de-
scribed by (12.1), consider the special case where w = 0 and ¥ = 0:

O11¢ Ann Az o Ais Ase X1,0-1X10-1
ot A2t A2z o Ags Age Xop-1X1 41
vech(3) = o316 | _ | As1 Az cr Ags Ase X3,t-1X10-1
022,t A1 A2 o M5 Mg Xot1 X101
032, As1 As2 o Ass Ase X33-1X3,:-1
033t Xe1 Ae2 -t Aes  Aes X3,4-1X3,t-1

When equating the elements on the two sides of the preceding equation, we see
that each volatility is related to past squares of returns in a rather complicated
manner. For example, writing out the first equation gives

ol = )\11X12,t_1 + A2 X0 -1 X1 -1 + A3 X3,—1 X1 41
+ /\14X22,t_1 + A5 X3:-1 X011+ /\16X§,t_1~

Even under the simplifying assumptions that X, depends only on X, but not
w or B;_q (i.e., w =0 and ¥ = 0), this equation is far from being simple. O

12.2.1 Diagonal Form

The first simple model of (12.1) is the case when ¥ and A are both diagonal
matrices. In this case the (4,7)th element of X; is

Oijt = wij + Gijoije—1 + 0 Xip—1X 1. (12.2)

For this model, each element of X; follows a univariate GARCH(1,1) model
driven by the corresponding elements of the cross-product matrix X;_; X, _,
and the element 0;;;1. This model has three parameters for each element of
3 and thus has 3k(k + 1)/2 = 18 parameters for the entire model.

Example 12.2 Continuing with Fzample 12.1, where w = 0 and ¥ = 0,
the matriz A = diag(A1,...,Xe). In this case, the elements a;; in (12.2) are
related to the diagonal elements through the equation (A1, A2, A3, A, As, Ag) =
(€11, 91, @31, 029, 32, 33 ).

In SPLUS, this model is known as the vector-diagonal model. Specifically,
let a three-dimensional vector a = (ay, az,a3)’. Then an equivalent vectorize
version becomes

vech(X) = diag(vech(aa™))vech(X, 1 XL ;).

Note that this is a special case of the diagonal form with A = diag(vech(aaT)). O
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12.2.2 Alternative Matrix Form

Instead of vectorizing ¥, we may want to mode! it directly in a matrix form.
There appears to be no unique way of doing this. In SPLUS it uses the form

q 4
Et =W+ Z Ai K (Xt_,-X:t-r_i) + Z B‘i ® Et_i, (123)

=1 i=1

where the symbol ® stands for the Hadamard product (element-by-element
multiplication). All quantities in equation (12.3) are k x k matrices (k is the
dimension of the observed vector) except for X, which is a k x 1 column
vector. The matrices w, A;, and B; must be symmetric.

For the GARCH(1,1) case, equation (12.3) reduces to

Bi=w+AQ (X1 X))+ B Z:-1.

Consider again the simple example where w = B = 0. In the diagonal form
(12.2), this equation becomes

T =A® (X1 X7 4),

where A is symmetric and vech(A) = A = diag(A1,..., A¢). In the particular
case that A = (aa”), where @ = (a1, a2,a3)’, the diagonal form studied in
(12.2) becomes

3 = (aa”) @ (X -1 X71).

12.3 QUADRATIC FORM

A model termed the BEKK model by Engle and Kroner (1995) works with
quadratic forms rather than individual elements of ;. In this case we write

%, =C'C+BY,1B+AX,,X, A, (12.4)

where C is a lower triangular matrix with k(k + 1)/2 parameters, and B and
A are k x k square matrices with k2 parameters, giving rise to a total of
2k% + k(k+1)/2 = (5k? + k)/2 = 24 parameters. Weak restrictions on B and
A guarantee that ¥, is always positive definite. Again, SPLUS allows for this
specification, known as the BEKK model. In this case, the matrices A and B
do not necessarily have to be symmetric.

12.3.1 Single-Factor GARCH(1,1)

A special case of the quadratic form or BEKK model is known as the single-
factor model. In this case we try to model the volatilities among the assets in
terms of one single source (a factor). Specifically, we write

3 =C'C + AN (fw'S;_ 1w+ o(w' X,_1)?), (12.5)
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where A and w are k-dimensional vectors and o and 3 are scalars. C is again
a lower triangular matrix with k(k + 1)/2 parameters. Usually, we assume
that w = (w1,...,wi) such that y, w; =1 (i.e., we think of w as weights).
Let Xy = w' X, and opp ¢ = w'Ew. Then the (4,5)th element of ¥; can be
written as

04t = Cij + AN B0ppt—1 + /\i)\janyt_l,
where ¢;; is the (i,5)th element of the matrix C'C. Consider the expression

Oppt = Wi jw=wC'Cw+wAINw(Bw'S;_ 1w+ a(w' X;-1)?)
(Cw) (Cw) + (Nw)*(Boppt—1 +aXZ, ).
We deduce that
Tije = Wi+ ii:\japp,tv
Oppt = Wpp+ ﬁUpp,t—l + dX;%,t—l?

where X; = \;/(Nw)?, @ = (Nw)?a, B = (Nw)24, with w;;, and wp, defined
appropriately. In this setting, the covariance of any two assets (returns) move
through time only with the variance of the portfolio, opp ¢, and this variance
follows a univariate GARCH(1,1). It can easily be seen that this is a special
case of the BEKK model where the matrices in the quadratic form A =
va wX and B = /B wX'. It has (k? + 5k + 2)/2 = 13 parameters. Since
this is a special case of the BEKK model, SPLUS can be used to fit this model.

12.3.2 Constant-Correlation Model

In this model, each return variance follows a GARCH(1,1) model and the
covariance between any two returns is given by a constant correlation times
the conditional standard deviation. Specifically, we write

Oiig = Wi+ Pudiit-1+ 0 XE
Tijt = pij(a'ii,tajj,t)l/z-

This model has a total of k a’s, k §'s, k w’s and k{k — 1)/2 p’s giving a total
of k(k+5)/2 = 12 parameters. In SPLUS this model is given by the command
ccc.g(p,q). We illustrate these arrays of models with SPLUS in the next
section.

12.4 EXAMPLE OF FOREIGN EXCHANGE RATES

In this example we study the foreign exchange rates used in Diebold and
Nerlove (1989). Although Diebold and Nerlove use a single-factor ARCH
model, we do not follow their approach completely. Instead, we use the data
as a vehicle to illustrate the various features of SPLUS in fitting a multivariate
GARCH model.
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12.4.1 The Data

We study seven major dollar spot rates; the Canadian dollar, Deutsche mark,
British pound, Japanese yen, French franc, Italian lira, and Swiss franc. The
data are from the first week of July 1973 to the second week of August 1985
and represent seasonally unadjusted interbank closing spot prices on Wednes-
days, taken from the International Monetary Markets Yearbook. They are
available on the Web page for this book under the file forex.dat. We read
the data in SPLUS using the read.table command, and convert them into
regular time series as follows:

> forex<-read.table(’forex.dat’,row.names=NULL, header=T)
> forex2<-rts(forex[,2:8],start=c(1973,29),freq=52)

12.4.2 Multivariate GARCH in SPLUS

Following the foregoing discussion, we restrict our attention to three compo-
nents, k = 3. We deal with the Deutsche mark (DM), the British pound (BP),
and the Japanese yen (YEN) only, denoted by S; = (S1¢, S2t, S3¢)’. Their time
series plots are shown in Figure 12.1.

A visual inspection indicates nonstationarity in each of the series, so we
proceed by taking differenced natural logs [i.e., X = (I — B)log 5], which al-
low convenient interpretation by means of the approximate percentage change.
The time series plots of X; are given in Figure 12.2.

> dlmpy<-diff (log(mpy))
> tsplot (dlmpy)
> legend(100,0.06,legend=names (as.data.frame(dlmpy)),1ty=1:3)

After taking this nonstationarity into account, we can use the function
mgarch to fit multivariate GARCH models. One of the most general models
handled is the diagonal-vec form discussed in Section 3.2.2. In our case where
p = q =1, the conditional variance matrix is given by

Yi=w+ A ®(Xt_1X;T_1)+Bl®Et_1, (12.6)

where the symbol ® stands for the Hadamard product (element-by-element
multiplication). All quantities in equation (12.6) are 3 x 3 matrices except for
X, which is a 3 x 1 column vector. The matrices w, A;, and B, must be
symmetric. Notice that this form models the conditional covariance matrix
in an element-by-element manner. The command

series.mod<-mgarch(series™-1, “dvec(1,1))

will fit the model shown in equation (12.6) for p = 1 and ¢ = 1. This model
is also referred to as the order (1,1) diagonal-vec model.
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Fig. 12.1 Time series plots of the raw data.

Example 12.3 We use the function mgarch to fit the order (1,1) diagonal-
vec model:

> mpy.mod.dvec<-mgarch(dlmpy ~-1, ~dvec(1,1))
To see a brief display of the model and the estimated coefficient values, type

> mpy.mod.dvec

Call: mgarch(formula.mean = dlmpy~-1, formula.var=~dvec(1,1))
Mean Equation: dlmpy ~ -1

Conditional Variance Equation: ~ dvec(i,1)

Coefficients:

A(1, 1) 1.199e-05
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From the output above, the estimated coefficients in equation (12.6) are

1.199€-05 —4.955e-06 1.066e-05
w=| —4.955e06 2.207e-06 —1.724e-06 |,
1.066e-05 —1.724e-06 1.235e-06

8.211e-01 8.344e-01 8.385e-01
B; = | 8.344e-01 9.000e-01 8.748e-01 |,
8.385e-01 8.748e-01 9.393e-01

and
1.070e-01 1.090e-01 1.032e-01

A; = 1.090e-01 6.910e-02 7.747e-02
1.032e-01 7.747e-02 5.348e-02

The function summary provides not only the information above, but also
standard inference results about the parameter estimates and test statistics :

> summary (mpy.mod.dvec)

Call: mgarch(formula.mean=dlmpy~-1, formula.var="dvec(1,1))
Mean Equation: dlmpy ~ -1

Conditional Variance Equation: ~ dvec(1,1)

Conditional Distribution: gaussian

Value Std.Error t value Pr(>|t])

A(1, 1) 1.199e-05 2.660e-06 4.507 3.915e-06

A(2, 1) -4.955e-06 1.438e-06 ~3.446 3.036e-04

A(3, 1) 1.066e~05 2.155e-06 4.946 4.878e-07

A(2, 2) 2.207e-06 7.930e-07 2.784 2.769e-03

A(3, 2) -1.724e-06 7.750e-07 ~-2.224 1.324e-02

A(3, 3) 1.235e~06 4.002e-07 3.086 1.060e-03
ARCH(1; 1, 1) 1.070e~01 1.463e-02 7.312 4.030e-13
ARCH(1; 2, 1) 1.090e~01 1.454e-02 7.496 1.126e-13
ARCH(1; 3, 1) 1.032e-01 1.908e-02 5.407 4.564e-08
ARCH(1; 2, 2) 6.910e-02 1.161e-02 5.949 2.239%e-09
ARCH(1; 3, 2) 7.747e-02 1.304e-02 5.941 2.351e-09
ARCH(1; 3, 3) 5.348e-02 6.215e-03 8.604 0.000e+00
GARCH(1; 1, 1) 8.211e-01 2.308e-02 35.569 0.000e+00
GARCH(1; 2, 1) 8.344e-01 1.983e-02 42.084 0.000e+00
GARCH(1; 3, 1) 8.385e-01 2.614e-02 32.074 0.000e+00
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GARCH(1; 2, 2) 9.000e-01 1.599e-02 56.271 0.000e+00
GARCH(1; 3, 2) 8.748e-01 2.274e-02 38.472 0.000e+00
GARCH(1; 3, 3) 9.393e-01 5.588e-03 168.100 0.000e+00

AIC(18) = -11804.52
BIC(18) = -11724.44

Normality Test:

Jarque-Bera P-value Shapiro-Wilk P-value

GERMANY 14.76 0.0006226 0.9869 0.6746
UK 1203.23 0.0000000 0.9521 0.0000
JAPAN 876.58 0.0000000 0.9560 0.0000

Ljung-Box test for standardized residuals:

Statistic P-value Chi-square d.f.

GERMANY 25.34 0.01331 12
UK 17.27 0.13965 12
JAPAN 17.71 0.12482 12

Ljung-Box test for squared standardized residuals:

Statistic P-value Chi-square d.f.

GERMANY 8.433 0.7506 12
UK 1.433 0.9999 12
JAPAN 4,835 0.9633 12

Lagrange multiplier test:
Lag 1 Lag 2 Lag 3 Lag 4 Lag b
GERMANY 1.15796 1.224393 -0.48768 -0.5168 -0.6364
UK -0.24630 -0.031264 0.06862 -0.3687 -0.3745
JAPAN 0.08048 -0.006353 -0.08270 -0.1131 -0.4491

Lag 6 Lag 7 Lag 8

GERMANY 1.5077 -0.98599 -0.205
UK -0.5422 -0.08647 -0.102
JAPAN -0.5800 0.30541 1.154

Lag 9 Lag 10 Lag 11 Lag 12 C
GERMANY 0.4657 0.4067 1.1327 -0.1457 0.66144
UK 0.1230 -0.1714 0.8290 -0.0212 0.09538
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JAPAN -0.4607 -0.3207 -0.8834 0.1006 1.15361

TR"2 P-value F-stat P-value

GERMANY 9.112 0.6933 0.8407 0.7094
UK 1.440 0.9999 0.1312 1.0000
JAPAN 4.556 0.9712 0.4173 0.9935

To make visual assessment of the goodness of fit of the model mpy .mod . dvec,
we can use the plot function

> plot(mpy.mod.dvec)
Make a plot selection (or 0 to exit):

plot: All

plot: Observations and ACFs

plot: ACFs of Cross-product of Observations

plot: ACF of the Squared Norm of the Observations
plot: Residuals and Conditional SDs

plot: Standardized Residuals and ACFs

plot: ACFs of Cross-product of Std Residuals

plot: ACF of the Squared Norm of the Std Residuals
plot: QQ-plots of the Standardized Residuals

WO ~NOO W WN P

(|

Visual comparisons between the behavior of the multivariate time series and
the behavior of the multivariate standardized residuals for the fitted model pro-
vide excellent guidance in assessing the fit of the model. Note here that while
in the univariate case the standardized residuals are simply the model residu-
als divided by the conditional standard deviation, the standardized residuals
for a multivariate GARCH are obtained by the whitening matriz transforma-
tion:

%z,

For a well-fitted multivariate GARCH model, this transformation produces
standardized residual vectors that have an approximately diagonal conditional
covariance matrix.

We can make a comparison plot as follows. Select menu choices 2 and 6 to
obtain the plots in Figures 12.3 and 12.4. The fitted model has resulted in
somewhat smaller ACF values for the standardized residuals relative to the
series observed.

Make menu selections 3 and 7 to get the ACF's of the cross-product plots
shown in Figures 12.5 and 12.6. By the ACFs of cross-products, we mean the
ACFs of all pairwise products of two or more multivariate time series. For our
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Fig. 12.3 Selecting menu choice 2: observations and ACFs.
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Selecting menu choice 6: standardized residuals and ACFs.
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tri-variate series we get the following: The upper-left-hand plot is the ACF
of the squared values of the DM series; the lower-right-hand plot is the ACF
of the squared values of the YEN series and the lower-left-hand plot is the
ACF of the product of the DM and YEN series. Figure 12.5 for the series
observed reveals significant autocorrelation in all six plots, indicating a need
for GARCH modeling.

Fig. 12.5 Selecting menu choice 3: ACFs of cross-product observations.

Figure 12.6 for the standardized residuals series shows that most but not all
of the autocorrelation structure has been removed by the fitted diagonal-vec
GARCH model. We may wish to try and refine the trivariate GARCH model
in order to remove the small number of remaining significant correlations in
the ACFs of the standardized residuals.

When we have more than two series to model, it may be inconvenient to
plot and compare the ACFs of all cross-products. SPLUS addresses this issue
by providing plots for the ACFs of the Euclidean norm of the residuals and
the standardized residuals, where the Euclidean norm is the square root of
the sum of squares of the elements of a vector. If the ACF of the norm of
the multivariate series exhibits significant correlation, multivariate GARCH
modeling may be called for. If the ACF of the norm of the standardized
residuals for the fitted model exhibits little correlation, the GARCH model fit
is probably pretty good. Menu selections 4 and 8 result in these ACF plots.
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Fig. 12.6 Selecting menu choice 7: ACFs of cross-product of standardized residuals.

We can also get paired plots of the residuals and their conditional standard
deviations by making menu selection 5. Finally, by making menu selection 9,
we can look at the normal Q-Q plots of the standardized residuals, which are
shown in Figure 12.7.

The object mpy.mod. dvec has several components which can be extracted.
Using residuals or sigma.t will return matrices with each column corre-
sponding to one of the time series in the multivariate set. For example,

residuals (mpy.mod.dvec)

is a 632 x 3 matrix with the first column corresponding to the DM series
of length 632, the second column corresponding to the BP series, and the
third to the YEN series. We can extract the standardized residuals using the
standardize=T option in the call of the function residuals.

We get Figures 12.8 and 12.9 using the commands

> pairs(dlmpy)
> pairs(residuals(mpy.mod.dvec,standardize=T))

As we can see in Figure 12.8, the data sets for the original series are highly
correlated, with a few outliers in evidence. In Figure 12.9 we see that the
bulk of the standardized bivariate residuals have a nearly circular scatter
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Fig. 12.7 Selecting menu choice 9: Q—Q plots of the standardized residuals.

plot, which means that the standardization has resulted in the bulk of the
residuals being uncorrelated. The few outliers seen in Figure 12.8 remain in
Figure 12.9 but with different orientations.

12.4.3 Prediction

Once we fit a multivariate GARCH model, we can use the predict func-
tion, with the fitted model object as an argument, to create an object of the
class mgarch.predict. This predictions object has the following components:
series.pred, the predicted values of the series; sigma.pred, the predicted
values of the conditional standard deviations; and R.pred, the predicted val-
ues of the conditional correlation matrix. After creating the mgarch.predict
object, we can use the plot function to get plots of these predicted series.

12.4.4 Predicting Portfolio Conditional Standard Deviations

If we have a portfolio with weights w = (wn, . . ., wq), where d represents many
financial time series returns, with the weights summing to 1, we can predict the
conditional standard deviations of the portfolio y using arguments optional for
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Fig. 12.8 Bivariate scatter plot of the original series.

the plot function. In our example, if the weights are w = (0.25,0.50,0.25),
we can use the following;:

> mpy.mod.dvec.pred<-predict{(mpy.mod.dvec,20)
> plot(mpy.mod.dvec.pred,portfolio=T,weights=c(0.25,0.5,0.25))

12.4.5 BEKK Model

The quadratic model, also known as the BEKK model, can be fitted in SPLUS

using “bekk(p,q) as the second argument to mgarch. For example:

> mpy.mod.bekk<-mgarch(dlmpy “-1, ~“bekk(1,1),trace=F)

The BEKK(1,1) model has the following conditional covariance matrix

structure:

T, =AAT + A (X, XT )AT + B,=, BT,

(12.7)

Because of the presence of a paired transposed matrix factor for each of the
d x d matrices A, Ay, and Bj, symmetry and nonnegative-definiteness of the

conditional covariance matrix X, are assured.

For our example, we have

A=

1.890e-03
1.105e-04
3.330e-03

1.105e-04

3.330e-03

—1.469e-03 1.296¢-04

1.296e-04

6.779e-07

1



176 MULTIVARIATE GARCH

2 20 218

. g 4 2 o 2 4 L

] GERMANY
-
o .o
<

- .'.'-".""\

_ g L JAPAN

> ., et
i . ...15;?:-«_
% 5 ) 2 — T T F 6 3 1 6

Fig. 12.9 Bivariate scatter plot of the standardized residuals.

9.187e-01 —3.632¢-02 6.526e-02
A; = —9.526e-04 8.925e-01 3.776e-02 |,
4.472¢-02 —1.398¢-02 9.339¢-01

and
3.510e-01 —1.005e-04 —9.379¢-02
B, = —8.426e-03 3.195e-01 —5.906e-02
—1.034e-01 1.873e-02  3.035e-01

12.4.6 Vector-Diagonal Models

In vector-diagonal models we assume that ¥ and A in equation (12.1) are
diagonal matrices. In this case we have

2 =AAT +a1aT @ (X, 1 XL D)+ 00T @ 3,y (12.8)

For this model, each element of X; follows a univariate GARCH model driven
by the corresponding element of the cross-product matrix X,_1X;_;. This
model is obtained by making the matrices A and ¥ diagonal.
The diagonal form, seen in {12.8), can alsc be fitted in SPLUS using the
“dvec.vec.vec(p,q) argument. For example

> mpy.mod.vec<-mgarch(dlmpy “-1, “dvec.vec.vec(1,1),trace=F)
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leads us to the estimates

2.606e-03 —1.673e-03 2.860e-03
A= —-1.673e03 7.679e-04 —5.629¢-05 |,
2.860e-03 —5.629¢-05 8.097e-04
9.320e-01
a; = | 9.152e01 },
9.698¢-01
and
2.991¢-01
by = 3.195e01
2.292¢-01

12.4.7 ARMA in Conditional Mean

If there is a mean structure, we fit the following general model with a vector
ARMA structure:

r 8
Yyt =c+ Z Py + Z 0; X1+ X;:.

i=1

(12.9)

=1

For example, we fit a diagonal ARMA(1,1) with a dvec(1,1) model for the
residuals by using the command

> mpy.mod.arma<-mgarch(dlmpy ~ arma(1,1), ~dvec(1,1), trace=F)

In our example we get

—7.867¢-05
—3.914e-04 |,
—1.489¢-04

Cc =

@, = diag{4.452¢-01, 5.824¢-01,6.590e-01},

O, = diag{—3.532¢-01, —4.830e-01, —5.998¢-01},

Ay

8.365¢-01
8.335e-01
8.309e-01

and
9.904¢-02
B; = 1.088¢01

1.072¢-01

8.335¢-01
9.141e-01
8.791e-01

1.088¢-01
6.085¢-02
7.395e-02

8.309¢-01
8.791e-01
9.402¢-01

),
).

1.072¢-01
7.395¢e-02
5.342e-02
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12.5 CONCLUSIONS

In this chapter we have considered an array of multivariate GARCH models.
Due to the high-dimensional nature of the problem, it becomes inevitable
that many of the models used in fitting multivariate GARCH series possess s,
rather complicated form. It is hoped that by following the examples given in
this chapter, readers can acquire the essentials of fitting some commonly used
multivariate GARCH models. It should also be pointed out that at the time
of writing of this book, there are very few software products that support
multivariate GARCH models. The only two commonly used platforms are
SpLUs and SAS. It is a rule rather than an exception that users must develop
their own software support for fitting multivariate GARCH series.

12.6 EXERCISES

1. Consider the foreign exchange rate example analyzed in Diebold and
Nerlove (1989) and Section 12.4.1 of this chapter. Download this data
set from the Web page for this book.

(a) Perform a univariate GARCH analysis on all seven countries as
done in the paper. You might also want to fit an AR structure
on the conditional mean as well. Comment on your analysis with
respect to the findings given in Diebold and Nerlove.

(b) Perform a multivariate GARCH analysis on the following four coun-
tries: U.K., Germany, Canada, and Japan. You might want to fit
a number of models, such as the BEKK or the diagonal model.
Comment on your analysis.

(c) In particular, utilize a constant correlation model for these four
countries. Comment on your results with the findings of the single-
factor model given in Diebold and Nerlove (1989).

2. Finding a reasonable theoretical assignment for this chapter is almost
impossible. For cultural enrichment and entertainment, with the obvi-
ous modifications, one might want to consider the following celebrated
assignment from Lang (1965). Take any article or book on GARCH
models and prove all the theorems without looking at the proofs given
in that article or book!
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Cointegrations and
Common Trends

13.1 INTRODUCTION

Cointegration deals with the common behavior of a multivariate time series.
It often happens in practice that each component of a multivariate time series
may be nonstationary, but certain linear combinations of these components
are stationary. Cointegration studies the effects of these combinations and
the relationships among the components.

A large number of texts have been written on cointegration since the pub-
lication of the seminal paper by Engle and Granger (1987). For example,
the book by Johansen (1995) provides one of the most complete coverages of
the statistical theory of cointegrated time series. A succinct survey of some of
the results presented in this book is given in the review article by Johansen
(1996). Other references about statistical inference for cointegrated systems
include Stock and Watson (1988), Phillips (1991), Park (1992), Reinsel
and Ahn (1992), and Chan and Tsay (1996).

On the econometric front, several monographs and special collections of
papers have also been devoted to this subject; see, for example, Banerjee,
Dolado, Galbraith, and Hendry (1993), Engle and Granger (1991), Maddala
and Kim (1998), and special issues of Ozford Bulletin of Economics and
Statistics (1990, 1992) and Journal of Policy Modeling (1993).

179
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13.2 DEFINITIONS AND EXAMPLES

The notion of cointegration is usually discussed along with such topics as
nonstationarity, unit roots, and common trends. Two excellent surveying
articles on trends and cointegration are those of Stock (1994) and Watson
(1994). Given the large number of papers written on this subject, it seems
prudent to limit our focus to a few fundamental concepts. We follow the
approach used in Johansen (1996) and exemplify a couple of examples in
that article to illustrate the idea. By adopting such an approach, this chapter
aims at providing a useful tutorial in cointegration.

From a statistical perspective, the idea of cointegration stems from the
notion of transformations. When the underlying data exhibit certain nonsta-
tionary behavior, one usually introduces transformation to render the data to
stationarity. For example, the Box—Cox power transformation is often applied
when nonconstant mean or variance behaviors are detected. In a time series
context, Box and Tiao (1977) discuss the idea of applying canonical cor-
relation transformations on a multivariate time series to identify stationary

components.
In economics, it is often the case that although individual components of a
multivariate time series X; = (X1, ..., X&) appear to be nonstationary, the

overall behavior of X; may be modeled by a stationary process after a suitable
transformation is applied to X;. Thus, the idea of cointegration deals with
the common behavior of a multiple time series. It stems from the fact that
certain linear transformations of X; may be stationary. Engle and Granger
(1987) formulate the idea of cointegration and present statistical procedures
to test for cointegration for a multiple time series.

To begin, first note that nonstationarity arises when a stationary process
is aggregated. For example, consider the process X; = Z:zl Z;, where Z; is
an uncorrelated sequence of random variables with mean zero and variance
o2, usually known as a white noise sequence and denoted as Z; ~ WN(0, o).
Then X, has variance to?, so that X, is nonstationary. In this case, X; is an
example of an integrated order 1, I(1) process and it is the cumulated sum
of Z, that gives rise to the nonstationarity. Specifically, we define the notion
of integration for a multivariate time series X, as follows:

Definition 13.1 The process X, = E;’_’;O U, Z,_; is said to be integrated
of order zero, I(0), if >0, ¥; # 0.

To understand why the last condition is necessary in this definition, con-
sider a simple univariate (k = 1) AR(1) case.

Example 13.1 Let X; = pX—1 + Z¢, with |p| < 1 and Z; ~ WN(0,1).
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Clearly, Xy = Y oo0 ' Zs—i and Y o ¥; = 1/(1 — p) # 0. According to the
definition, X; is I(0). Now consider

t t
EX,‘ :pri—l +ZZ,'.
i=1 =1

Rearranging terms, we have

t t

(1-p)Y_ Xi=) Zi—p(X: - Xo),

i=1 i=1
that is,

t t

YoXi = U-p)' ) Zi- l—f—; [Z p(Zs—i — Z_,-)] :

i=1 i=1 =0

This equation shows that it is the condition 0 # Y coq¥i = (1 — p)~' that
guarantees the cumulated process Z:=1 X; to be nonstationary. On the other
hand, the differenced process Yy = AX; = X; — X, is clearly stationary, but
it is not necessarily 1{0). To see this fact, consider

i = Xi—Xi

m . m .

= Z P i — Z P Zi_1-;
=0 - | =0 .

= Z +Z;0z (1 - ;) Zy—;

i=1
x
= E Yidi—1,
=0

with g0 = 1,¢; = p*(1 - 1/p), i = 1,2,.... Direct calculation shows that
S=1; = 0. According to the definition, although the process {Y:} is stationary,
it is not I1(0). O

Having defined the notion of I(0), we can now define the notion of I(1) as
follows.

Definition 13.2 A k-dimensional {X,} is said to be integrated of order
1, I(l), ZfAXt = (I - B)Xt = Xt - -Xt—l is I(O)

Herein, we define BX; = X;_;. The difference between I(0) and I(1) is
demonstrated by the random walk model.

Example 13.2
AXe = Xo — X1 = Zy,
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with {Z:} being an I(0) process so that {X,} becomes an I(1) process. Note
that in this case, X; = Xo + Z:Zl Z;. O
In fact, any process {X;} of the form
i oo
X, =CY Z+) CiZix
k=1 k=0
is also an I(1) process provided that C # 0. To check this, consider
AX; = X;—Xiq
t 00 t—1 00
= CZZk + ZCth—k - Cz Zy — ZCth—l—k
k=1 k=0 k=1 k=0
oo
= CZi+ Y Cr(Zi-k = Zi-1-)
k=0

(C+Co)Z: + Z(Ck — Cr-1)Zs—k,
k=1

which is I(0) provided that C + Cp + Y e, (Ck — Ck—1) # 0 (i.e., C # 0).
To understand the real effect of cointegration on a multivariate time series,
consider the following three-dimensional example.

Example 13.3 Let

t
Xu = Zzi1+zt2a
=1

t
1
X2 = §;Zi1+zt3,

Xz = Zt3,

where (Zi1, Zi2, Ze3)' ~ WN(0, I3) and I3 denotes the identity matriz of order
3.

Clearly, X = (X11,X12, Xt3)' is nonstationary since the first two compo-
nents consist of the common term Z:=1 Zi1, called the common trend or the
common nonstationary component of X;. On the other hand,

AXt = (I—B)Xt
X —-Xi1

1 !
= (Ztl + 2o — Zy1,2, EZ“ + Zs3 — Zs_1,3, Zy3 — Zt—l,B)
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is stationary. It can easily be checked that AX, is I(0), hence X, is I(1).
Furthermore,

¢ ¢
X —2Xpp = Z Zin + Zeg — Z Zy — 2243
=1 i=1
= i — 273,

which is stationary as it is expressed as a finite sum of two uncorrelated
white noise sequences. Although X, is nonstationary, for 8’ X,, where 3 =
(1,—2,0)’ is stationary, we say that X is cointegrated with cointegrating vec-
tor 3 = (1,—-2,0)'. The part Z:zl Z;; is called a common stochastic trend
of the process X,. In this ezample, stationarity is attained by either differ-
encing or by taking linear combinations. ]

As an application of this example, suppose that X;; represents the whole-
sale price index for a specific country, X;o represents a trade-weighted foreign
price index, and X3 represents the exchange rates between these two coun-
tries, all measured in logarithmic scales. Preceding equations indicate that
the two indices are driven by the same stochastic common trend Z:zl Zi1.
The equation

X —2Xp— Xia=Zeg — 3243

represents a stationary equilibrium relationship between the two indices and
the exchange rate with (1, —2, —1)’ being an cointegrating vector. This is an
example of purchasing power parity; further details can be found in Johansen
(1996).

With this example as the background, we can now define cointegration
precisely.

Definition 13.3 Let {X} be an I(1) process. If there exists 8 # 0 such that
B’ X, is stationary by a suitable choice of 3’ Xy, then X, is called cointe-
grated and 3 is called the cointegrating vector. The number of linearly
independent cointegrating vectors is called the cointegrating rank, and
the space spanned by the cointegrating vectors is called the cointegrating
space.

Remark. Let X, be I(1) and let A be a matrix of full rank. Then AX,
is also I(1). Further if 8 is the cointegrating vector, then (A~!)3 is the
corresponding cointegrating vector of AX;. Consequently, the notion of I(1)
is invariant under any nonsingular linear transformation.

13.3 ERROR CORRECTION FORM

To carry out inference for cointegrated series, Engle and Granger (1987)
make use of the idea of error correction form for a multivariate time series.
Again, this concept is best understood through an example.



184 COINTEGRATIONS AND COMMON TRENDS

Example 13.4 Consider the bivariate process

AXy = —o1(Xio10 —2X-12) + Z4,
AXyy = Zy,

where
Zt = (Ztla th), ~ WN(O, I2)

Several interpretations can be deduced from this example,

1. Change in Xy is related to a disequilibrium error X t~1,1 — 2Xi—1,2 by
the adjustment coeflicient ;.

2. AX, is I(0), so that X, is I(1). To establish this, consider

_ AXn
AX: = (AXt2>

‘012(1 — 1) (Zs—ic11 — 2Z1—i—12) + Zna
i=0
Z2

_ 10 Zu N 20, Zi—11
- 01 Zso 0 0 Zi 1,2
—a1(l—a1) 201(l —aq) Zy-2,1 .
+ ( 0 0 Zian )70

which implies that 72, ¥; # 0. So AX is I(0) and X, is I(1).
3. X — 2X;p is an AR(1) process. To check this, observe that

X —Xe1n1 = —oa(Xe-11 —2Xe-12) + Za,
Xio—Xt 12 = Zp.
Therefore,
Xi1—2X30 = (1-—a)Xe—11—(1—1)2Xs 10+ Zyy — 2240
= (1-01)(Xt-1,1~2Xs-12) + 21 — 2Z4,.
Consequently,
t—1 _
Xy —2Xp2 = Z(l — 1) Zi—i1 — 22— 2) + (1 — e1)"(Xo1 — 2Xo2)
i=0
xS

= Z(l —01)(Zi—i1— 22— 2)

=0
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when the initial values Xq; — 2Xg2 are expressed in terms of past values
of Z’s. In particular,

¢
Xz = Z Zia + Xo2
=1
w .
X = 2Xp+ Z(l — 1) (Z4-iy —2Zs—i2)
i=0

t o0
= 2}: Zip + Z(l ~ 1) (Zt-i1 — 2Z1-i2) + 2Xo2.

i=1 i=0
Hence, X1 — 2X;2 is an I(0) stationary AR(1) process.

4. Accordingly, (1,—2)’ is the cointegrating vector, as X1 — 2X;2 is sta-
tionary and I(0) and E:=1 Z;9 is the command trend.

5. The idea of error correction can be interpreted as follows. Let X
represent the price of a commodity in a particular market and X;» is
the corresponding price of the same commodity in a different market.
Suppose that the equilibrium position between the two variables is given
by X;1 = vX;2 and change in X;; is given by its deviation from this
equilibrium in period t — 1:

AXpy =1 (Xe11 —vXe—12) + Zia.
Similarly, if we apply the same interpretation to X;2, we have
AXpo = a2(Xe—10 — v Xi—12) + Zso.

If X;; and X; are I(1), then according to the definition, AX,; and
AXis are I(0). Further, since Z;; and Z;, are assumed to be stationary
and I(0), this implies that

(X110 —vXi—12) = DXy — Zy

must be stationary (i.e., X is cointegrated). O

13.4 GRANGER'S REPRESENTATION THEOREM

The ideas of Example 13.4 can be summarized succinctly by the celebrated
Granger’s representation theorem. Consider a k-dimensional vector autore-
gressive [VAR(p)] model X; which satisfies the equation

X, =X+ +8,X_p+ 2y, (13.1)

where {Z;} ~ WN(0,I;), a k-dimensional white noise process. It is well
known [see, e.g., page 11 of Liitkepohl (1993)] that a sufficient condition for
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X, to be stationary is that the solutions of the characteristic polynomial of
(13.1) lie outside the unit circle (no unit roots allowed), that is,

det(I — ®1( — - —®p(P) #0, forall (| <1
Now, define ®(¢) = I — &;( — - — ®p(P, & = ~®(1), and [ =
—-d®(¢)/d¢ |¢=1 +®. Then,
e = —1)=d1+--+& -1,
d¢ oo

= & +285( |e=1 + -+ PBp(P ! =1 +O
= <I>1—+-2fI>2+-“+pr>p+<I>1+---+<I’,,—I
20, + 302+ -+ (p+1)®p — 1.

With these definitions, we first state a well-known condition under which
a stationary VAR(p) process is I(0).

Theorem 13.1 If X, is a stationary VAR(p) process such that det(®(¢)) # 0
for all |¢| < 1, then X, can be given an initial distribution such that it becomes
I(0) if and only if ® is full rank. In this case, there is no unit root for X
(stationary) and

o0
X=)Y V.Z;,
=0
where U(¢) = Y000 Wil = (®(¢)) ™" converges for || < 1+ for some § > 0.
Since ® = ®, + --- + &, — I, the full rank condition of ® in this theorem
holds if and only if det® = det(®(1)) # 0. In other words, the full rank

condition of ® simply means that det(®(¢)) # 0 for { = 1. When this matrix
is of reduced rank, we have a cointegrated system.

Definition 13.4 Let a be any k x r matriz of rank r (r < k). Define a1 to
be a k x (k — r) matriz which is full rank such that o’a = 0.

Now assume that the following condition holds for X:
det(®(¢)) #0 forall |{| <1

(i.e., the process X is nonstationary since it can have unit roots). Under this
assumption, we have Granger’s representation theorem.

Theorem 13.2 Granger’s Representation Theorem Let X; be a VAR(p)
process and let det(®(C)) # 0 for all |¢| < 1 (i.e., unit roots are allowed so
that the process X can be nonstationary). Then X, is I(1) if and only if

®=af,
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where a and (3 are k X r matrices which are of full rank v (r < k), and
o' T8, is of full rank.

In this case, AX; and ' X, can be given initial distributions so that they
become I1(0). Furthermore, under these circumstances, X can be expressed

as
t

=B.(c,TBL) 0! Y Zi+ ¥(B)Z,

i=1
and
p—1
AXi=of X1+ ) [ AXy i+ Zi, (13.2)
i=1
where

Ii=—=(®i1++®), i=1,...,p—1.

Note that (13.2) in this theorem is the error correction form expressed in
terms of AX,;. Again, this theorem can best be understood in terms of a
specific VAR(2) example.

Example 13.5 Let X; =, X;: 1+ X 2+2Z;. By differencing, we have

Xi—Xi1 = —-(I-0)X 1 +0:X; 2+ Z,,
AX; = —(I-2)X: 1+ -21)X: 20— (T -®1-93)X; 2+ Z,
~(I=0)( X1 - Xt 2)— (I -0, —93) X, 2+ Z,
—(I - P)AX, 1 +PX; 2+ Z,
X, o -(I-9) AX, 1+ Z,
OX; 1 - (X1 — X o) —(I-®1) AX 1+ Z,
X, 1+ (& -I-®)AX; 1+ Z;
X 1 +T1 AX: 1 + Z4,

where I'y = —®,. Note that this last expression is ezactly the error correction
form. Under cointegration, we have ® = af' and

A.Xt = aﬁ,Xt—l +F1 AXt_l + Zt.

Therefore, the cointegrating vectors are o' and the common trend is

t
af,_ ZZ‘ O
i=1

We now use a second example to illustrate the reduced rank structure for
a VAR model.



188 COINTEGRATIONS AND COMMON TRENDS

Example 13.6

— 2
AX¢=< 31 gl>Xt—1+Zt=AXt—l+Zt-

In other words,

Xt = (I+A)Xt._1 +Zt = (Dlxt—l +Zta

where
¢1=I+A=(1_0a1 2?1)
Observe that
®) = I—-2:¢
I-(I+A)
_ 1-C+aml —2a1€
B 0 1-¢
_ a1 —20 1-a; 2m
- ( 0 0 ) + (1 - C) ( 0 1 ) y
with
o —2a
@ = —Q(l)_(ol 01)7
and

det(®(¢)) = (A -Ql+a Q).

This characteristic polynomial has roots { =1 and ¢ = (1 - a))tif o #1.
Therefore, for 0 < oy < 1, det ®(¢) =0for { = 1 and (= 1/(1 —ay),and as a
result, det ®(¢) = 0 for some | ¢ |> 1. Clearly, & has reduced rank (= 1) and
® = of, where a = (—a1,0),8 = (1,-2), a1 = (0,1), and AL = (2,1)".
Hence,

o/ Ty = (0,1)(28, - I) G) =1.

By letting Xo = 0, the condition of Granger's representation theorem is
satisfied and X is therefore I(1). In this case,
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_ X1
x - (%)

where

that is,
t 0
Xe=PBra1'y Zi+) ViZ, ;.
i=1 i=0

Note that the quantity o’ ZE:] Z; of this equation constitutes the common
trend. Substituting the definition of oy = (0,1)’ into this expression, the
common trend equals to Z:zl Ziz. Furthermore,

-1 2«
AX, = ( 01 01 )Xz-1+zt
= ( '8‘1 )(1,—2)X,_1+Zt
= O(,@/Xt_1 + Z;.

In this case, the cointegrating vector is § = (1,-2)" and T'; = 0 in Granger’s
representation theorem. U

13.5 STRUCTURE OF COINTEGRATED SYSTEMS

Expressing a cointegrated system in the error correction form yields
p—1
AX, = ®Xia+) LidXei+Z,,
i=1
Z; ~ N(0,Zz).
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The underlying parameters consist of (¢, 3,T'1,...,I'p—1,E7). There are all
together 2r(k —r) + (p — 1)k? + 3k(k + 1) parameters since « is of rank r, so
it consists of r x (k — r) freely varying parameters. Herein, we shall assume
that

rank & = r, 0<r<k,
® = aﬁl,
where o and 3 are k x r matrices of rank r. This assumption simply states

that the number of unit roots in the system is k —r for 0 < r < k, so that the
number of common trends ranges from k to 0. Some remarks are in order.

Remarks

1. Hy: r = 0; then ® = 0, which means that AX, is a stable VAR(p — 1)
(i.e., there are k unit roots and no cointegration relationship).

2. Hy: r = k; then ® is full rank, which means that det(®({)) # 0 for
|¢| = 1. Hence X is I(0) and is a stable VAR(p) satisfying

Xt = <I>1Xt_1 + "'+@pXt_p+Zt.

3. Hy: 0 <r < k; then ® is of rank deficient with ® = af’. In this case,
there exist k — r unit roots and r cointegration relationships for X,
with cointegrating vectors given by the matrix 3, and /| Z:zl Z; are
the common trends.

13.6 STATISTICAL INFERENCE FOR COINTEGRATED SYSTEMS

Before we embark on estimation and testing, we need to review a few key
results from multivariate analysis, one of which is the concept of canonical
correlations.

13.6.1 Canonical Correlations

Let a (p; + p2) by 1 random vector X be partitioned as two subcomponents

with dimensions p; and p,, respectively, such that X = (X (I)I,X (2),)’ and
the corresponding covariance matrix be partitioned as

Zn I
Y= .
( Yo1 oo
Assume that these random vectors are of mean zero and assume also that

p1 < pz. One of the main goals in canonical correlation analysis is to find
linear combinations of the subcomponents such that their correlations are
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biggest. In summary, the following algorithm can be used; for details, see
Anderson (1984).

1. Find U = o/ X™ and V = v X®@ such that corr(U, V) is maximized
subject to the condition that EU? = EV? = 1. Suppose that such
linear combinations are found and let them be (1) and 4. Let
Uy =o' XD and V; =y’ X? and denote the correlation between
U1 and V1 by /\1.

2. Find a second set of linear combinations of X and X (2), Us and
Va, say, with EUZ = EV} = 1 such that among all possible linear
combinations which are uncorrelated with U; and V; from step 1, Us
and V3 have the largest correlation, and denote this correlation, by Az.

3. Continuing with this procedure, at the rth step, we have the following
linear combinations U; = o' XMWy, = y0'X@) | U, =o' x1),
V, = 7(’”)’X () with corresponding correlations Ay > Az > --- > A, and
EUZ=EV2=1,i=1,...,r

Definition 13.5 These r pairs U, and V,. are known as the r-th canonical
variates, where U, = o' XM and V, = v’ X @ each with unit variance
and uncorrelated with the first r—1 pairs of canonical variates. The correlation
Ar is called the r-th canonical correlation.

Theorem 13.3 The quantities X}, ..., 2 satisfy

| £1285, Eo1 — A28y, =0, (13.3)
and the vectors oV, ... a®)) satisfy
(12255 Z21 — A2Z11)a = 0. (13.4)

In other words, a!®) and A? are the eigenvector and eigenvalues of the ma-
trix £11 1255, Bg1. We can give the following interpretations for canonical
correlations and variates.

1. X2 can be thought of as a measure of the relative effect of V = 4/ X2
on predicting U = o/ X (i.e., o’ XU is the linear combination of X1
that can be predicted best by a linear combination of X(? given by
v X)),

2. In the one-dimensional case, assume that U and V have mean zero and
variance 1 with correlation p. Suppose that we want to predict U by a
multiple of V, bV, say. Then the mean square error of this prediction is

E{U-bV)?=1-2bp+ b2 = (1-p%) + (b—p)>.

This error is minimized by taking b = p with mean square error (1 — p?).
Thus the greater the effect of p?, the more effective V is in predicting
U.
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3. In practice, we need to replace the unknown covariance matrix ¥ by its
estimate 3 and then solve the sample canonical variates & and sample
canonical correlation A2. These can also be shown to be the maximum
likelihood estimates if X is assumed to be normally distributed. Details
can be found in Anderson (1984).

13.6.2 Inference and Testing

Recall that from Granger’s representation theorem, given that X, is I(1), the
error correction form is

p—1
AXi=0Xi1+) Ti DX+ Zs,

i=1

where ® = af’ is of rank r(r < k), with a and 8 being k X r matrices.
Let Z; ~ N(0,Zz), so that X; becomes a Gaussian time series. We now
show how to construct estimators and tests for cointegrated systems by the
following steps. Let the length of the underlying series be T'.

1. Regress AX;on AX; ;,i=1,...,p—1 and form the residuals Ryg;.
2. Regress X;— 1 on AX; ;,i=1,...,p— 1 and form the residuals R;;.
3. Calculate the sums

T
1
Sy =) Ruj, i,j=0,1

t=1

Theorem 13.4 Under the hypothesis H,: ® = af' with rank(®) = r, the
mazimum likelihood estimate for B is given by

where each ¥; is a k X 1 vector obtained by solving the following eigenvalues
and eigenvectors problem:

| AS11 — 810550 S01 |= 0
for
with R
(AiS11 — 51050 So1)s = 0.
In this case, the mazximum likelihood function becomes

LT o | Soo | Iy (1 — Na),

max
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and an estimator of o is given by & = 501[9.

Note that by the definition of canonical correlation, by represents the
squared canonical correlation between AX; and X;_; after adjusting for the
effects of AX¢_1,...,AX_p. Again, the following remarks can be given to
Theorem 13.4.

Remarks

1. If r =0, AX; is I(0), but X1 is I(1), so that we expect that AX,
and X;_; are uncorrelated. A proof of this fgct can be found in Chan
and Wei (1988). This result means that all A; should be very small.

2. Ifr=k, AX,and X;_; are both I(0). In this case we expect significant
relationships among them. As a result, the estimates of 3 are coming
from those that correlate most with the stationary process AX; after
adjusting for the effects of AX;_1,...,AX;_,.

3. For r in between, we choose B by taking the most correlated components
in the canonical correlation sense.

Turning to testing for the hypothesis of H, (i.e., there are at most r coin-
tegrating relationships), consider the likelihood ratio statistic as follows:

k
Qr = ~2logQ(H, | Hy) = =T ) log(1— k).

i=r+1

We reject H, in favor of H,y; if @, is too big. The interpretation for con-
structing such a statistic can be argued as follows. When H, is true, there
are supposed to be r cointegrating relationships, which should be captured
by A1,...,A-. As a consequence, A; for i = r + 1,...,k should then be rel-
atively small. If on the contrary they are observed to be too big for any
given series, () becomes huge and there is strong evidence of rejecting H,
in favor of H,y,. With this interpretation, the next step is how to compare
Q- with known distributions. In a standard multivariate context, we expect
to compare ), with some form of a chi-squared distribution. Unfortunately,
due to the nonstationarity of X, standard asymptotic is no longer available.
Instead, we need to consider the following theorem.

Theorem 13.5 Let X, be a VAR(p) with r cointegrating relations. Then

Qr = —2log(Q(H: | Hi))
k
= -T ) log1-X)
i=r+1
L

— &
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where
£ = trace {/01 dB(s)(B(s)) {/01 B(s)B'(s)ds] B /01 B(s)(dB(s))’} ,

with B(s) being the (k — r)-dimensional standard Brownian motion.

Notice that the limiting distribution depends only on the number k& — r,
which is the number of common trends in the underlying series X;. Tab-
ulations of special cases of £ can be found in a number of places, including
Banerjee, Dolado, Calbraith, and Hendry (1993), Johansen (1995), Tanaka
(1996), Maddala and Kim (1998), and Liitkepohl (1993). Other examples
and applications of cointegrations can be found in Chapter 19 of Hamilton
(1994).

13.7 EXAMPLE OF SPOT INDEX AND FUTURES

Our data set consists of 1861 daily observations of the spot index and the
futures price of the Nikkei Stock Average 225 (NSA), covering the period
from January 1989 through August 1996. This data set is analyzed in Lien
and Tse (1999) and is stored under the file dh.dat on the Web page for this
book. It can be read in SPLUS using

> dh.dat<-read.table(’dh.dat’,row.names=NULL,header=T)

We will convert the data from daily to monthly (93 months altogether), since
the SPLUS program that we introduce runs out of memory very fast with big
data sets. For that reason we do

> spotmonth<-numeric(93)

> futmonth<-numeric(93)

> for(i in 0:93){

spotmonth[i+1]<-mean(dh.dat$SPOT [dh.dat$INDEX==1])
futmonth[i+1]<-mean(dh.dat$FUTURES [dh.dat$INDEX==1])
}

and two vectors with monthly data are created, spotmonth and futmonth.
We convert them into regular time series and plot them, with the resulting
plot shown in Figure 13.1.

> spotmonth<-rts(spotmonth,start=c(1989,1) ,freq=12)

> futmonth<-rts(futmonth,start=c(1989,1),freq=12)

> spotfut<-ts.union(spotmonth,futmonth)

> tsplot(spotfut)

> legend(1994,35000,legend=c("Spot Index","Futures Price"),
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Time series plot of original monthly data
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Fig. 13.1 Nikkei stock average, 1989/1 through 1996/8.
+ 1ty=1:2)

> title(’Time series plot of original monthly data’)

Observe in Figure 13.1 how close the two series are, suggesting a possible
cointegration. Besides the data, we can also download the source code that
will be used to determine the cointegration factor on the Web page for this
book under the file coin.q. The source code can be loaded into SPLUS using
the command

> source(’coin.q’)

The vector series will be modeled by a VAR model, whose order will be
determined by the AIC criterion using the function coin.order, which is
included in the coin.q package.

> coin.order(spotfut,1,15)
[([111:
(1] o

$order:
[1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

$AIC: $HQ:
[,1] [11]
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[1,]1 30.03754 [1,] 30.03754
[2,] 23.83575 [2,] 23.87973
(3,1 23.79718 (3,] 23.88569
[4,] 23.41154 (4,] 23.54512
[5,] 23.30038 [5,] 23.47960
[6,] 23.31654 [6,] 23.54195
[7,] 23.25862 [7,] 23.53082
[8,]1 23.30175 [8,] 23.62132
[9,] 23.24694 [9,] 23.61448
[10,] 23.33625 [10,] 23.75237
[11,] 23.43114 [11,] 23.89645
[12,] 23.44845 [12,] 23.96360
[13,] 23.35808 [13,] 23.92370
[14,] 23.19575 [14,] 23.81248
[15,] 22.94025 [15,] 23.60876
$SC:
[,1]

[1,] 30.03754
[2,] 23.94467
(3,1 24.01647
[4,] 23.74264
[5,] 23.74479
[6,] 23.87578
[7,] 23.93426
[8,] 24.09537
[9,] 24.16019
(10,] 24.37079
[11,] 24.58867
(12,1 24.73073
[13,] 24.76690
[14,]) 24.73292
[15,] 24.60767

The function coin.order accepts the cointegration rank and the maximum
order of the VAR model as arguments. Notice that in our example the min-
imum AIC is attained at lag 15. Then use the coinec.ml to get the value
of the likelihood ratio statistic as well as the estimate for 3. For testing the
hypothesis Hy: r = rp = 0, try

> spotfut.co0_coinec.ml(spotfut,0,15)

that is, we create an SPLUS object spotfut.co0 using coinec.ml with argu-
ments the bivariate series, rg, and the VAR order. This command produces
a number of outputs, as follows:

> names(spotfut.co0)
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[1] nu |l order " n lel " Y1 n " dx n
IIMIl
[7] IIROII IIR1 L1} IISOOIl Ilslol' Ilsol n
"s11"
[13] IIGII ||eing' "eig“ IICH “Hl!
HD!I
[19] Ilresidualsll n Zull 1] erl " arll llYll
"tratio"

We are mostly interested in the objects C, H, and Qr, which are B, &, and Q
respectively. Those values are

> spotfut.coO$Qr
(1] 27.38487
> spotfut.coO0$H
[,1]
[1,] -408.4281
[2,] -420.6450
> spotfut.co0$C
[,1] [,2]
[1,]1 0.01097465 ~0.01093322

While for Hy: r = ro = 1 (i.e., for one unit root), we have

> spotfut.coi_coinec.ml(spotfut,l,15)
> spotfut.col$Qr
(1] 0.7501444
> spotfut.col$H
[,1]
{1,] -408.4281
[2,] -420.6450
> gpotfut.col$C
[,1] (,2]
[1,1 0.01097465 -0.01093322

Hence, the LR statistic for testing 7 = 0 (i.e., 2 unit roots) is Qr =
27.38487, while the LR statistic for testing r = 1 (i.e., 1 unit root) is Qr =
0.7501444. Using the tabulated values of the Q. statistic from Johansen and
Juselius (1990), we select a model with one unit root. The VAR coefficients
for the model can be retrieved by using

> spotfut.col$ar
[,1] [,2] [,3] [,4] [,85] {,86]
[,7]

{1,] -4.803346 5.514735 1.898729 -1.669563 4.579344 -4.413753
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[1,] 8.778863
[2,] -5.501376 6.211529 2.124517 -1.915902 3.701566 -3.517150
[2,] 9.211856
[,8] [,9] [,10] [,11] [,12] [,13]
[,14]
[1,] -8.672473 3.077767 -3.145176 -8.335677 7.885471 -5.432223
[1,] 5.400558
[2,]1 -9.103786 3.199721 -3.249017 -8.312419 7.847850 -5.463355
[2,] 5.428096
[,15] [,16] [,17] [,18] [,19] {,20]
[,21]
[1,] -3.109619 3.313804 3.685125 -3.565751 3.726477 -3.641071
[1,] 0.5527697
[2,] -3.493974 3.679815 3.556284 -3.427241 4.110664 -4.023150
[2,] 0.5064034
[,22] [,23] [,24] [,25] [,26] {,27]
[,28]
(1,1 -0.5870155 0.5422025 -0.7212085 -1.612225 1.409778 3.228336
[1,] -3.174341
[2,]1 -0.5183685 1.0584595 -1.2518207 -1.949711 1.750407 3.396192
[2,] -3.357184

[,29] [,30]
[1,]1 -1.294167 1.600571
[2,] -1.528398 1.846917

which gives the final estimated model for the bivariate series:
AXi=af' X 1 +TW1AX 1+ + T15AX 15 + Z4,

where

—408.4281
—420.6450

—4.803346 5.514735 —1.294167 1.600571
Fl = yrey 1—‘15 = .

), B = (0.01097465, —0.01093322),

—5.501376 6.211529 —-1.528398 1.846917

The series W; = 0.0110X; + —0.0110X,; forms a cointegrating linear com-
bination that should be stationary, and this series is plotted in Figure 13.2.
Relative to the original two series, the series W; certainly looks more station-
ary.

> tran.sf<-as.vector(spotfut.col$C%*)t (spotfut))
> tran.sf<-rts(tran.sf,start=c(1989,1),freq=12)
> tsplot(tran.sf)

In the case of R, replace the commands ”rts” and "tsplot” in SPLUS by
the following commands ”ts” and "ts.plot” in R, respectively. The rest of the
commands in R are exactly the same as in SPLUS .
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Fig. 13.2 Transformed series W; = 0.0110X;: — 0.0109X2;.

13.8 CONCLUSIONS

As indicated in the introduction, cointegration has been an actively pursued
area of research, particularly among econometricians. Owing to its simple
idea, it is reasonable to expect that the concept of cointegration will be gaining
its significance in other areas of social sciences. Recently, the concept of
cointegration has found applications in many areas in finance. For example,
Hiraki, Shiraishi, and Takezawa (1996) use cointegration and common trends
to explain the term structure of offshore interest rates, and more recently, Lee,
Myers, and Swaminathan (1999) used the idea of cointegration to determine
the intrinsic value of the Dow Jones industrial index. Another area that is
under rigorous development is combining long-memory phenomena together
with cointegration, called the fractional cointegration; see, for example, Lien
and Tse (1999). Owing to space limitation, we are unable to provide more
descriptions about these developments. We hope this survey offers a focused
and practical introduction to cointegration.

13.9 EXERCISES

1. Let X1 = Yoy Zi and Xy = Zy, where {Z;1} and {Zj} are two
independent sequences of i.i.d. random variables.
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(a) Show that X;o is I(0).
(b) Show that X is I(1).
(c) Show that X; = X1 + X¢2 is I(1).

2. If X, is I(d;) and Y; is I(dp) with d; # d2, show that X: +Y: is I(d),
where d = max{d,,d2}.

3. In Example 13.3, show that the vector (0,0,1) is also a cointegrating
vector.

4. Consider the equations

1
AXy = _§(Xt—l,1 - Xi—12) + 24,

1
AXio Z(Xt—l,l — Xi_1.2) + Ziz,

where {Z;;} and {Z:;} are two independent sequences of i.i.d. random
variables.
(a) Solve these equations for X;; and Xi2 in terms of Z,1 and Z;s.
(b) Find an equation for X;; — X¢2 and another equation for X +2X:2,

¢) Show bv direct calculations that X:; — X2 is stationary, but the
y y
processes Xy and Xyo are nonstationary.

(d) What happens if 1 is replaced by —3?
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Markov Chain Monte
Carlo Methods

14.1 INTRODUCTION

Bayesian inference is an important area in statistics. It has found applications
in a spectrum of disciplines. One of the main ingredients of Bayesian inference
is to incorporate prior information via the specification of prior distributions.
As information flows freely in financial markets, incorporating prior informa-
tion constitutes a natural approach. In this chapter, we shall briefly introduce
the essence of Bayesian statistics with reference to time series. In particular,
we shall discuss the celebrated Markov Chain Monte Carlo method in detail
and illustrate its uses via an example.

14.2 BAYESIAN INFERENCE

In essence, the Bayesian approach is to incorporate uncertainties for the un-
known parameters. Predictive inference is conducted via the joint probability
distribution of the parameters 8 = (61,6,,...,8,) conditional on the observ-
able data x = (x1,...,2,). The joint distribution is deduced from the distri-
bution of observable quantities via the Bayes Theorem. Many excellent texts
have been written about the Bayesian paradigm, see for example, DeGroot
(1970), Box and Tiao (1973), Berger (1985), O'Hagan (1994), Bernardo
and Smith (2000), Lee (2004) and Robert (2001), just to name a few.

The observational (or sampling) distribution f(z|f) is the likelihood func-
tion. Under the Bayesian framework, a prior distribution p(8) is specified for

201
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the parameter 8. Inferences are conducted based on the posterior distribution
7(8|z) according to the following identity:

_ £(=p)p(0)
w(ole) = Sl

where f(z) is the marginal density such that

f@ = [ alo)piore. (14.1)

The probability density function #(f|z) is known as the posterior density
function. Since z is observed, the marginal density in (14.1) is a constant. It
is more convenient to express (14.1) as

7(6le)  L(8)p(6), (14.2)
where L(6) = f(z|6) is the likelihood function. One way to estimate 6 is to
compute the posterior mean of 8, that is,

b= / 6 (6])d6. (14.3)

Prior and posterior are relative to the observables. A posterior distribution
conditional on z can be used as a prior for a new observation y. This process
can be iterated and eventually leads to a new posterior via the Bayes theorem.
We illustrate this idea with an example.

Example 14.1 Suppose we observe x1,. .., T, independent random variables
each N(u,0?%) with p unknown and o? known. Estimate p in a Bayesian
setting.

The likelihood function is

L) = g7 9 [—ﬁ 3 (@i - u)2] x oxp [~ 57 @ — ]
i=1

where T is the sample mean of the observation. It seems natural to assume
that g follows a normal distribution by specifying the prior p(it) ~ N(m, 72),
where m and 72 are known as hyperparameters. Substituting this prior into
(14.2), we have

o) o oxp [- S [

202 /n 272
(b —mi)®
X exp [ o2 ,
where
2% + mo?/n 2 202

m=——-— and 7 =—>
T2 +02/n nt? +g?’



MARKOV CHAIN MONTE CARLO 203

equivalently,
o~ N (ml’ T12)

The posterior mean i = E(u) = m; is an estimate of p given z. Notice
that m; tends to the sample mean T and 72 tends to zero as the number
of observation increases. In most cases, the prior distribution plays a lesser
role when the sample size is large. Another interesting observation is that
the information contained in the prior becomes less when 72 increases. When
72 — 00, p(u)  constant and 7(u|z) = N(Z,02%/n). Such a prior is known as
the non-informative prior as it provides no information about the distribution
of u.

There are many ways to specify a prior distribution in the Bayesian setting.
Some prefer non-informative priors and others prefer priors that are analyti-
cally tractable. Conjugate priors are adopted to address the latter concern.

Given a likelihood function, the conjugate prior distribution is a prior dis-
tribution such that the posterior distribution belongs to the same class of
distribution as the prior. Conjugate priors and posterior distributions are
differed through hyperparameters. Example 14.1 serves as a good example.
Conjugate priors facilitate statistical inferences because the posterior distri-
butions belong to the same family as the prior distributions, which are usually
of familiar forms. Moreover, updating posterior distributions with new infor-
mation becomes straightforward as only hyperparameters have to be updated.

In the one-dimensional case, deriving conjugate priors is relatively simple
when the likelihood belongs to the exponential family. Conjugacy within
the exponential family is discussed in Lee (2004). Table 14.1 summarizes
some of the commonly used conjugate families. Herein, Be denotes the Beta
distribution, G the Gamma distribution, G the Inverse Gamma distribution,
and N the Normal distribution.

Table 14.1 Conjugate Priors

Likelihood L(6) Conjugate prior p(6)
Poisson 6 = A G(a, B)
Binomial § = p Be(a, 8)

Normal 6 = y, 02 known N(m,72)
Normal § = 02, p known IG(a, 3)

14.3 MARKOV CHAIN MONTE CARLO

One desirable feature of combining Markov Chain simulation with Bayesian
ideas is that the resulting method can handle high dimensional problems effi-
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ciently. Another desirable feature is to draw random samples from the poste-
rior distribution directly. The Markov Chain Monte Carlo (MCMC) methods
are developed with these two features in mind.

Suppose that we want to obtain information on a distribution #*, which is
known only up to a constant C, where C' = )y 7(6). Here we assume that
the state space E is either finite or countable. Then 7* is a distribution with
probability mass function 7(8)/C. The main idea of MCMC lies in recognizing
the posterior density as

. f(=l0)p(6)
) = S es FalBP ) 144
MCMC proceeds by finding an ergodic Markov chain 8g, 6., . . . having sta-
tionary distribution 7*. For background information about Markov chain
and stationary distribution, see Bhattacharya and Waymire (1990). We
then simulate g, 61, ...,8, for large n. As n tends to infinity, the empirical
distribution is given by

. 1 ¢
fin(4) = — 1 ;)I{o.-eA}, (14.5)
for some event of interest A. Under certain technical conditions, it can be
shown that #% converges to 7* and %}, can be used to approximate 7* for
large n. Similarly, the shape of 7* can be obtained by plotting the histogram
of 8g,64,.... Further, if we want to evaluate a moment of a function f under
7, that is, 7 (f) = Y geg f(8)7*(8), we can use an estimate based on the
empirical distribution given by

1

() =fo= g k};}f(ek). (14.6)

For a Markov chain with state space E, we usually specify {6.} in terms
of its transition probability matrix P = p(,£)g ¢cE. Let 7* = (nf,73,...) be
the vector comprising the stationary distribution. According to the standard
theory of Markov chain, then

TP =7". (14.7)
Since the constant C cancels on both sides of the preceding equation, we have
nP=m or m(§) =Y m(8)p(6,&). (14.8)

6eE

Recall that from the Bayes formula, to compute the posterior mean of 6, we

have to compute
Z 6n*(6|z)
8cE

200 (216)p(6)
Yser f(lO)p(6)

E‘R‘ (0)

(14.9)
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It is the denominator (the constant C)) that presents the real challenge as the
sum may be higer-dimensional and has no closed form. In this case, MCMC
comes in handy with 7*(6) being the posterior and 7(f) = f(z|0)p(8).

14.3.1 Metropolis-Hastings Algorithm

Given a distribution 7* with probability density function propotional to 7(f),
where § € E, how can we simulate a Markov chain {6,} having stationary
distribution 7*? In other words, how can we find a transition matirx P =
p(0,€)s,ccE such that the matrix equation

mP=m (14.10)

is satisfied, where m = (mp, 71, . . .) is the row vector comprising the stationary
distributions {m;}.

The Metropolis-Hastings method consists of a very simple idea; sample
from a proposal distribution g(f,&) for each starting point §. Given that a
proposal point ¢ has been generated from ¢(9, -), it is accepted with probability

a(f,¢) = min{l,r(0,£)}, where
_ m(8)q(&9)
r(0,§) = 06,8 (14.11)

This is the same as generating a uniform random number U and accepting
the state £ if U < a(8,£); otherwise the point 6 is returned so that the algo-
rithm chooses to remain at the state 8 if the proposal is rejected. One crucial
feature of (14.11) is that there is a ratio of two 7-values so that the unknown
constant C is cancelled out. The quantity r(8,€) in (14.11) is sometimes
known as the Metropolis-Hastings ratio and the entire algorithm is known as
the Metropolis-Hastings algorithm. Let p(6, £) denote the probability that the
state £ is returned. Then P(f,41 = £|0n = 0) = P(y = £|0n, = )P (6py1 =
|y = £), where y is an intermediate state. Therefore,

_ [ 4(6,6)a(0,), if€#9,
P(9, 5) B { Q(ga 0)&(9, 9) + ZEGE Q(07§)(1 - a(e»g))v if E = 0.

In essence, the Metropolis-Hastings algorithm goes as follows. For simplic-
ity, let E = {1,2,...,m} be a finite state space.

1. Choose a proposal distribution with transition matrix @ = (q(%, j))i,jeE-
Choose an integer k between 1 and m.

2. Let n=0and 8y = k.

3. Generate a random variable 8 such that P(6 = j) = ¢(6,,j) and inde-
pendently generate a uniform random number U.
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4. f U < a(k, j), then 8 = j; otherwise # = k.
5. Set n=n+1and§, =6.
6. Return to step 3.

It turns out that the Markov chain constructed in this way, also known as
the Metropolis-Hastings, MH chain, possesses desirable properties. In partic-
ular, if the chain is time-reversible (see Bhattacharya and Waymire (1990)),
then the requirements for a transition mechanisim to make #* stationary
becomes much simpler. The proof of the following results can be found in
Asmussen and Glynn (2007).

Theorem 14.1 The distribution ©* is stationary for the MH chain 8q,6,, ...
constructed above.

Theorem 14.2 If the MH chain is irreducible (see Bhattacharya and Waymire
(1990)), then the empirical distribution 7}, converges to the stationary distri-
bution m* and the empirical average f, converges to =*(f).

We conclude this section with an example.
Example 14.2 Independent Sampler.

Suppose that the proposal distribution is independent of 8; so that ¢(6;,6;) =
g(6;). Then the MH ratio becomes
m(6;)q(0:;) _ w(b;)
r(0;,0;) = and
Gl = 26alby) = wl)
a(8;,9;) = min{l,w(d;)/w(6:)},

where w(0) = 7(6)/q(f). If g is taken to be the prior p(f), then 7*(6) is
proportional to f(x|68)p(#) and the acceptance probability is

a8y, 6,) = min{l, 1(210) }

f(zl61)
In this case a state 82 with a larger likelihood is always accepted; otherwise
the acceptance probability will just be the likelihood ratio. O

14.3.2 Gibbs Sampling

A special sampler of the MH algorithm is the Gibbs sampler. Gibbs sampling
is probably one of the most commonly used MCMC methods. It is simple,
intuitive, easily implemented and designed to handle multidimensional prob-
lems. The basic limit theorem of Markov Chain serves as the theoretical
building block to guarantee that draws from Gibbs sampling agree with the
posterior asymptotically.
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Although conjugate priors are useful in Bayesian inference, it is difficult to
construct a joint conjugate prior for several parameters. For a normal dis-
tribution with both mean and variance unknown, deriving the corresponding
conjugate prior can be challenging. But conditional conjugate priors can be
obtained relatively easily, see for example, Gilks, Richardson and Spiegelhal-
ter (1995). Conditioning on other parameters, a conditional conjugate prior
is one dimension and has the same distributional structure as the conditional
posterior.

Gibbs sampling takes advantage of this fact and offers a way to reduce a
multidimensional problem to an iteration of low-dimensional problems. Specif-
ically, let z = (zy,...,Z,) be the data and let the distribution of each z; be
governed by r parameters, § = (6,,69,...,6.). For each j = 1,...,r, spec-
ify the one-dimensional conditional conjugate prior p(;) and construct the
conditional posterior by means of the Bayes theorem. Then iterate the Gibbs
procedure as follows.

Set an initial parameter vector (69,...,02). Update parameters by the
following procedure:

o Sample 6] ~ p(6,169,...,0°% z);
e Sample 8} ~ p(6,(6},63,...,6° z);

e Sample 8} ~ p(6.61,63,...,0%_,,z).

This completes one Gibbs iteration and the parameters are updated to
(61, ...,6). Using these new parameters as starting values, repeat the itera-
tion again and obtain a new set of parameters (6%,...,60%). Repeating these
iterations M times, we get a sequence of parameter vectors 6 .., o),
where 8 = (6%,...,0%), for i = 1,...,M. By virtue of the basic limit
theorem of Markov Chain, it can be shown that the Markov chain {§(™)}
has a limiting distribution converging to the joint posterior p(61,8s,...,0.|z)
when M is sufficiently large, see Tierney (1994). The number M is called
the burn-in period. After simulating {#(M+1) g(M+2)  g(M+n)} from the
Gibbs sampling, Bayesian inference can be conducted easily. For example, to
compute the posterior mean, we evaluate

n
12 (M+5)

To acquire a clearer understanding of Gibbs sampler, consider the following
example.

3

Example 14.3 Let zy,...,z, be independent N(u, 0?) random variables. Let
T1,...,Zn be independent N(u,0?) random variables with both p and o? un-
known. Estimate p and o2 via Gibbs sampling.
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Recall that the conjugate prior of u is normal for a given o2 and that the
conjugate prior of o2 is inverse gamma for a given u. Let up ~ N(mp,73) and
02 ~ IG(ay, B) be random variables drawn from the initial priors. Define y;
and o2 to be random variables generated in the i-th iteration of the Gibbs
sampling procedure. The conditional posterior for yu; can be obtained by
mimicking Example 14.1. We have

pi ~ N(mi, 72),

where
. 2 2
_ 1+ m10r /0 5 A 07,
g= L T and 77 = —=1 ol (14.12)
i toi,/n nr_; +0i

In Exercise 1 at the end of this chapter, the conditional posterior for o2 is
found to be o? ~ IG(a, B;), where

a; =n/2+0; 1 and ,81—

S % Xn: : (14.13)

j=1
Hence, Gibbs sampling is implemented as follows:
1. Set i = 0 and initial values of myg, 7¢, ao, Bo and o3;
2. Sample p; ~ N(m;, 7?) and update a;+1 and G;41 by (14.13);
3. Sample a ~ IG(a41, Bi+1) and update m;qq and 7, +1 by (14.12);
4. Seti=i+1;
5. Go to Step 2 until ¢ is equal to a pre-specified integer M + k.

After that, we keep the last & pairs of random variables for indices M + 1 to
M + k. Estimation is achieved by taking sample means:

A_l
“‘k

HM+5,

—

o2 =

M?r 1 M?r

M+J"

x| =

1

<.
1l

Example 14.4 As an illustration of the Gibbs sampling method, consider
the U.S. weekly interest rates, see Tsay (2006). The data consist of 7-year
Treasury constant maturity rates and 3-year Treasury constant maturity rates,
from Jan 2, 1981 to Feb 19, 2010. This data set can be found in web site of
the Federal Reserve Bank of Saint Louis and is also listed in the web site of
this book. The actual data file contains two columns. The first column is the
7-year rate and the second column is the 3-year rate.
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Consider the following dependent and independent variables:
e y;: the weekly change in 7-year maturity rate,
e 1;: the weekly change in 3-year maturity rate,
where y; and x, are obtained by using the diff command in SpLUS /R.

>USwr<-read.table ("WGS3&7YR.txt")
>y<-diff (USwr([,11)
>x<~-diff (USwrl,2])

We fit the data in R with serially correlated errors. The entertained model is
= o+ b1zt + Zy,andZy = ¢1Zi 1 + P2Z1—2 + €&, (14.14)

where ¢, is a sequence of i.i.d. normal variables with mean zero and variance
o?. In this situation, we implement Gibbs sampling to estimate parameters
between the regression model and the time series model. Define some nota-
tions first. Let

B (Zt 1$Z!‘- 2) X (1 .’Et) ¢, = (¢11¢2)H6, = (1607161)3
Y= (yl,...,yn),X = (Xl,...,Xn).

We choose the conjugate prior distributions

VA
B~ N(Hm, Yo1), ¢ ~ N(Iloz, 3o2), 72 ~ Xf,, (14.15)

where g1, 10, M2, 220, U, A are known hyperparameters. The conditional
posterior distribution of 3 given the data and the other parameters is

(8Y, X, ¢,0) ~ N(p,, Xs), (14.16)

—Zt 2 XXt 5 (1417)

where V; = Y; — $1Yi_1 — ¢2Yi—2, X; = X — 41 X1 — ¢2X;—2 and B is the
least squares estimator of 3.

Similarly, the posterior distribution of ¢ given the data and the other
parameters is also normal with mean g, and variance X,, where

Zt 2Bt t

=3+ Zt 2 a,ndy,* = 5. (So1 pos +

21—1 — 20—21 Zt 2

andpl = 5.(3g top + S=21). (14.18)

Now consider the posterior distribution of o2 given 3, ¢ and the data. Because
B and ¢ are known, we calculate

€ = Zt - d)'BtandZt = th — ﬂ/Xt.
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Note that the posterior distribution of 02 is an inverted chi-squared distribu-
tion, that is,
vA+ 3 €2 9
—0‘% ~ Xv+(n—1)' (1419)
Following are the steps to implement Gibbs sampling

1 Choose the hyperparameters

to1 = (0,0), o = diag(4,4), pgg = (0,0),
o2 = diag(0.25,0.16),v = 10, A = 0.1.

2 Specify arbitrary initial value
B8 =(0.1,05),¢ = (0.1,0.1),02 = 0.05.

3 Draw samples from 8 ~ (8] X,Y, ¢,02) as given in (14.16).
4 Draw samples from ¢ ~ (¢|X,Y, 8,0?) as given in (14.18).
5 Draw samples from 02 ~ (¢2|X,Y, 8, ¢) as given in (14.19).

Repeat steps 3-5 for 2,100 iterations to obtain a Gibbs sample. We discard
the first 100 samples and use the sample means as estimates of parameters.
The SpLUs /R code is given as follows.

#Step 1: specify the hyper parameter values of the prior
mu01=c(0,0)

SigmaO1=diag(c(4,4))

mu02=c(0,0)

Sigma02=diag(c(0.25,0.16))

lambda=0.1

v=10

#Step 2: specify arbitrary starting values
#for beta,phi,sigma

n<-length(USwrc3)

n0<-length(USwrc3)

X0<-cbind(1,USwrc3)

Y0<-USwrc7

n<-n-2

#Specify arbitrary starting values for beta,phi,sigma
sigma.mcmc<-0.05

phi.mecme<-¢(0.1,0.1)

beta.mcmc<-¢(0.1,0.5)

#Repeat steps 3-5 for many iterations

#to obtain a Gibbs sample

beta.est<-NULL
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phi.est<-NULL
sigma.est<-NULL
for(i in 1:2100){
phi.mcmc<-as.vector(phi.mcmc)
temp1<-rbind(c(0,0), (XO*phi.memec [1]) [1: (n0-1),1)
Zero2<-matrix{rep(0,4) ,nr=2)
temp2<-rbind (Zero2, (X0*phi.mcmc[2]) [1: (n0-2),])
X<-X0-templ-temp2
X<-X[3:n0,]
temp3<-c(0,Y0[1:(n0-1)]1)
temp4<-c(0,0,Y0[1: (n0-2)])
temp5<-cbind (temp3, temp4)
Y<-Y0-temp5%*%phi .mcmc
Y<-Y[3:n0]
Sigma.star=solve(solve(Sigma01)
+solve(solve (t(X)%*%X)*sigma.mcme))
mu.star=Sigma.star¥+/(solve(Signa01)%*/mu01
+solve(solve (t (X)%*%X)*sigma.mcmc)
%xthsolve (£ (X) %*%X) %xht (X) %*4Y)

beta.mcmc<-rmvnorm(1,mu.star,Sigma.star)
beta.est<-rbind(beta.est,beta.mcmc)
Z=Y0-X0%x*%t (beta.mcmc)
B<-cbind(Z[2: (n0-1)1,Z[1: (n0-2)1)
Sigma.1=solve(solve(Sigma02)+t(B)%*%B/sigma.mcmc)
mu. 1=Sigma. 1%+ (solve (Sigma02) %*%mu02

+solve (solve (t(B)%*%B)*sigma.mcmc)

%xdhsolve (£ (B)%+%B)%*%t (B) %*%Z[3:n0])
phi.mcmc<-rmvnorm(1,mu.1,Sigma.1)
phi.est<-rbind(phi.est,phi.mcmc)
a=2[3:n0]-BY%*Jt (phi.mcmc)
sigma.mcmc<-rchisq(1,v+length(a))
sigma.mcmc<- (v¥lambda+t(a)%*%a)/sigma.mcmc
sigma.mcmc<-as.numeric(sigma.mcmc)
sigma.est<-c(signma.est,sigma.mcmc)

¥

211

Table 14.2 Posterior Means and Standard Errors of (14.14) by Gibbs Sampling with

2,100 Iterations

Parameter | (o A ) ¢2 o

Mean 0.0013 0.9987 0.1661 —0.0209 0.0593
Standard error | 0.0018 0.0109 0.0279 0.0278 0.0011
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We obtain the fitted model as

Y; = 0.0013 + 0.9987USwrc3 + Z;,andZ; = 0.1661Z;_; — 0.0209Z; 5 + €;.
(14.20)
Table 14.2 shows the posterior means and standard errors of the param-
eters. From this result, we see that model (14.20) confirms the unit root
behavior between the weekly changes of the two interest rates. However, the
posterior standard error of ¢, is relatively large, indicating uncertainty in this
estimate. Finally, Figure 14.1 shows the histograms of the marginal posterior
density of each parameter. The asymptotic normality of these five estimators
are reflected in this figure.

14.3.3 Case Study: The Impact of Jumps on Dow Jones

To appreciate the usefulness of Gibbs sampling, we use it to estimate param-
eters of a jump-diffusion model and examine the impact of jumps in major
financial indices. Note that maximum likelihood estimation does not work for
this model; see Redner and Walker (1984).

In the jump-diffusion model, the dynamics of asset returns is assumed to
be

dlog St = udt + O'th + YdNt, (1421)

where S; is the equity price, W; is the standard Brownian motion, N; follows
a Poisson process with an intensity A, and Y is a normal random variable with
mean k and variance s?. We assume that dW;, dN; and Y are independent
random variables at each time point ¢. This model requires estimation of
&, 0, Ak and s based on observations {S1,..., S, Sn+1}, where S; represents
the equity price observed at time ¢;. These prices produce n independent log-
returns, which are denoted by {Xi,...,X,}, where X; = log S;y1 — log S;.
With a fixed At, a discrete approximation to the dynamics (14.21) is

A log Sy = u,At +ocAW, + YAN,. (1422)

When At is sufficiently small, AN, is either 1, with probability AAt, or 0,
with probability 1 — AAt.

Example 14.5 Simulate 100 sample paths from the asset price dynamics of
(14.21) with parameters: p = 0.08,0 =0.4,A=3.5,5=0.3 and k = 0. Each
sample path replicates daily log-returns of a stock over a one-year horizon.
Based on these 100 paths, estimate the values of p,o,\, 8 and k with the
Gibbs sampling.

Simulating paths
Sample paths are simulated by assuming n = 250 trading days a year and so
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Fig. 14.1

Posterior densities of the five parameters.
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the discretization (14.22) has At = 1/250. On each path, log-asset price at
each time point is generated as follows:

At + oV Ate if U>MAt
1 ir1 — ) i = " :
og Si+1 —log S { pAt + k+VoZAt +s%, if U< MAt

where € ~ N(0,1) and U ~ U(0,1) are independent random variables. To
simplify notations, we denote z; = log Si4+1 —log S;. The corresponding SPLUS
code and a graph of three sample paths are given below.

### generate observation of Y ####
MUY <~ 0.08;

SIGMAY <- 0.40;

MUJ <~ O;
SIGMAJ <- 0.3;

LAMBDA <- 3.5;

m <- 100;

n <- 250;

dt<- 1/250;

Y <- matrix(100,m,n+1};

for (i in 1:n) {

JUMP <- ifelse(runif (m)<LAMBDA*dt,1,0);

JumpSize <- JUMP*rnorm(m,MUJ,SIGMAJ);

Y[,i+1] <~ Y[,i] + rnorm(m,MUY*dt ,SIGMAY*sqrt(dt)) + JumpSize;
}

plot(¥[1,], type=’1’,xlab="time’,ylab='stock price’)
for (k in 2:100) {

plot(Y[k,], type=’1’,xlab="time’,ylab=’stock price’)
}

Gibbs sampling

There are 5 parameters in the model so that we have to develop 5 conditional
conjugate priors from their conditional likelihood functions. Let us proceed
step by step.

1. Conditional prior and posterior for u:
Other things being fixed, the likelihood function of p happens to be
proportional to a normal density. Specifically,

BRI | IR
i=1

202At

2
1 n
X expq—5— [,U - Z($i - YiANz')}
i=1
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Fig. 14.2 Simulated sample paths of a jump-diffusion model.

Therefore, a normal distribution N(m, 72) is suitable for u as a condi-
tional conjugate prior. The posterior distribution can immediately be
obtained as

N 7?2 E?:1(-Ti -Y;AN;) + mgz/n 7252 |
72+ 02/n T2 4 o2

(14.23)

. Conditional prior and posterior for o%:

The conditional likelihood function of o2

1 n
~5-3 %3 > (@i — pAt - Y,AN,)?

i=1

L(0®) « (02)—71/2 exp

We select IG(a, ) as the conditional prior for o2. Then, the posterior
distribution becomes

(14.24)

n 2
IG (a+n/2,,8+ Liz (@i gﬁ:—ﬁANz) ) .

Conditional prior and posterior for A:
The conditional likelihood of A

L) < (AA)N (1 - aAp)™Y,



216 MARKOV CHAIN MONTE CARLO METHODS

where N is the total number of jumps in the horizon. From Table
14.1, we find that the appropriate conjugate prior is Be(a,b). Simple
computation shows that the posterior distribution is

Be(a+ N,b+n— N). (14.25)

4. Conditional prior and posterior for k:
Since k is the mean of the normal jump size, its prior and posterior are
obtained in the same manner as y. We state the result without proof.
The prior is N(my,72) and the posterior is given by

N (T12/ Zf:l Y;/N +mys?/N 252 )

T2 +52/n "Nt2 + 82 (14.26)

5. Conditional prior and posterior for s%:
Since s? is the variance of the normal jump size, its prior and posterior
are obtained in the same manner as 2. The prior is IG(ay,By) and
the posterior is given by

N 2
IG (ay + N/2, By + Z,=1(+k)> . (14.27)
The above priors and posteriors are distributions conditional on values of Y;
and AN;. This complicates the Gibbs sampling procedure since only z; is
observable for all . Therefore, at each time point ¢;, Y; and AN; should be
simulated from distributions conditional on the observed value of z; before
substituting them into the priors / posteriors. We need the following facts:

;|AN; =0 ~ N(uAt,o?At);
Ti|AN; =1 ~ N(uAt+k,o?At + %),

which together with Bayes theorem show that

L P(zi]AN; = 1)AA
P(AN: =1]z:) = P(z:]AN; = 1)AAt + P(zi|AN; = 0)(1 — MAt)’

The jump size Y; is necessary only when AN; = 1. Under such a situation,
we recognize that the condition density function of Y; is

(0= Yi— ptP] [ (Y= k)
202At P 252 ’

fWile) o« f(@lYp(Ys) o< exp [—

which implies

z; — ult)/o? At + k/s? 1
1/02At +1/s2 "1/02At +1/s2) (14.29)

Yile;, ~ N ((
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With all the ingredients ready, the Gibbs sampling starts by choosing initial
values of g, 02, ko, Ao and s3. We also need initial values of Yi(o) and ANi(O) ,
both of which can be obtained by a simulation with the initial parameters.
The Gibbs sampling runs as follows:

1. Sample y; ~p(u]| _1 ko1, ? 1»Aj—1) as given in (14.23);
2. Sample 0; ~ p(o3|p;,kj—1,5%_1,Aj-1) as given in (14.24);
3. Sample A; ~ p(Ajlp;,02,kj_1,52) as given in (14.25);

4. Sample k; ~ p(k;|pj,03,83_1,);) as given in (14.26);

5. Sample 57 ~ p(s2|uj,0%,k;, A;) as given in (14.27);

6. Sample ANi(j) ~ p(ANi(j)luj, 2,kj,s2) as given in (14.28) for all ¢ =
1,2,...,n

7. Sample Y7 ~ p(v;9)| 1,02, k;,57) as given in (14.29) at the time point
t; that AN; = 1;

8. Set j =7+ 1 and go to step 1. Repeat until j = M’ + M.

Inference is drawn by taking sample means of the values of the last M simu-
lated parameters. The SPLUS code is given as follows:

### Input the stock price ###
Y <- read.table("table.txt")
Y <- log(Y)

#i## initial value for the Markov Chain ###
dY <- diff(Y);

lambda <- 6;

mu <~ 0;

sigma <- 1;

k <~ 0;

s <-1;

jump<- c(rep(1,n))

jumpsize <- dY/2

### assign prior distribution ###
MEANmu<-mean(dY)/dt/n;

VARmu <- 1;
MEANk <- 0.5;
VARk <- 1;

ALPHAsigma <- 2.5;
BETAsigma <- 1/25;
ALPHAs <- 2.5;
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BETAs <- 1/25;
ALPHAlambda <- 2;
BETAlambda <- 60;

sample<-c(rep(0,n+5})
result<-c(rep(0,5))

### assign prior distribution
MEANmu<-mean(dY)/dt/n;
VARmu <- 1;

MEANk <- 0.5;

VARk <- 1;

ALPHAsigma <- 2.5;
BETAsigma <- 1/25;
ALPHAs <- 2.5;

BETAs <- 1/25;
ALPHAlambda <- 2;
BETAlambda <- 60;

sample<-c(rep(0,n+5))
result<-c(rep(0,5))

for (i in 1:m) {

### calculate the parameters for posterior distributions ###
Vmu <- sigma“2/n/dt; #normal

Mmu <- sum(dY-jumpsize)/n/dt;

Vmu2<- 1/(1/Vmu + 1/VARmu) ;

Mmu2<- (Mmu/Vmu+MEANmu/VARmu) /(1/Vmu+1/VARmu) ;

mu <- rnorm(1,Mmu2,sqrt(Vmu2))

Asigma <~ n/2+1 #inverted gamma

Bsigma <- sum({(dY-mu*dt-jumpsize)~2)/2/dt;
Asigma2<- Asigma + ALPHAsigma+l;

Bsigma2<~ Bsigma + BETAsigma;

sigma <- 1/sqrt(rgamma(l,Asigma2,Bsigma2));

J <- jumpsize[jump==1]

j <~ sum(jump)

Alambda <- j+1 ; #BETA

Blambda <- n-j+1;

Alambda2<- Alambda + ALPHAlambda-1;
Blambda2<~ Blambda + BETAlambda-1;
lambda <- rbeta(l,Alambda2,Blambda?2)/dt;

if (3> {
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Mk <- mean(J); #normal

Vk <- s°2/j;

Vk2<- 1/(1/Vk + 1/VARk);

Mk2<- (Mk/Vk+MEANk/VARK)/(1/Vk+1/VARK);
k <- rnorm(i,Mk2,sqrt(Vk2));

As <- j/2+1 #inverted gamma

Bs <- sum((J-k)"2)/2;

As2<- As + ALPHAs+1;

Bs2<- Bs + BETAs;

s <- 1/sqrt(rgamma(1,As2,Bs2));
}

### find the probabilities of jump and distribution of jump
varjump <- 1/(1/s8"2+1/sigma”2/dt);

meanjump <- ( (dY-mu*dt)/sigma2/dt + k/s"2 ) *varjump;
jumpsize <- jump* (rnorm(n) *sqrt (varjump) + meanjump) ;

ratiol <- (1-lambda*dt)/(lambda*dt) ;

ratio2 <- sqrt((sigma~2xdt+s”2)/(sigma”2*dt));

ratio3 <- - (dY-mu*dt)~2/sigma~2/2/dt + (dY-muxdt-k)"2/(sigma”2*dt+s"2
pjumps <- 1/( 1 + ratiol*ratio2+*exp(ratio3));

jump <- ifelse(runif(n)<pjumps,1,0);

s <-c(mu,sigma,lambda,k,s);
sample <-sample+c(jump,s);
result <- c(result, s)
print(c(s,sum(jump)))

}

result <- matrix(result, 5)

plot(result[1,1:m], type="1", xlab="no. of step”, ylab="drift")
plot(result[2,1:m], type="1", xlab="no. of step", ylab="volatility")
plot(result[3,1:m], type="1", xlab="no. of step", ylab="intensity")
plot(result(4,1:m]l, type="1", xlab="no. of step", ylab="mean of jump")
plot(result(5,1:m], type="1", xlab="no. of step", ylab="S.D of jump")

### the probabilities that time point has jump ###
print (sample[1:n]/m)

### the estimated parameter ###
print(sample[(n+1): (n+5)]/m)

### the true parameter ###
print(c(MUY,SIGMAY,LAMBDA,MUJ,SIGMAJ,sum(JUMP)))
### the sample mean & volatility of jump ###
JS<-JumpSize [JUMP==1]

print (c(sum(JUMP) ,mean(JS),sqrt(var(JS))))
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Results and comparisons

Table 14.3 shows the estimation results. We report the averaged posterior
means over the 100 sample paths and the variances. It is seen that the esti-
mates are close to true values and variances are small. Gibbs sampling does
a good job in estimating parameters for jump-diffusion models.

Table 14.3 Performance of the Gibbs Sampling

| a? A k s

True value 0.08 04 3.5 0 0.3
Mean | 0.0769 0.3986 3.8600 0.0163 0.2868
Variance | 0.0233 6.5x10~% 0.8895 0.0039 0.0015

2

Example 14.5 shows the usefulness of Gibbs sampling in estimating the
jump-diffusion model. In practice, this application can be crucial for a risk
manager to assess how much risks are due to jumps. To examine the jump
risk empirically, we estimate the impact of jumps on the Dow Jones Industrial
Index. Our estimation is based on daily closing prices over the period 1995-
2004. Parameters are estimated on an annual basis.

Table 14.4 Jump-diffusion Estimation for Dow Jones

Year | 7 a? A k s

1995 0.2871 0.0901 1.9035 0.0627 0.2608
1996 0.2483 0.1172 2.8180 —0.0337 0.2350
1997 0.2384 0.1684 3.6587 —0.0256 0.2087
1998 0.1776 0.1752 5.5127 —-0.0123 0.1782
1999 0.2177 0.1624 17968 —0.0176 0.2627
2000 | —0.0162 0.1971 3.3364 —0.0235 0.2157
2001 0.0150 0.1951 4.1797 -0.0383 0.2008
2002 | —0.2188 0.2484 2.7072 0.0106 0.2390
2003 0.1891 0.1626 2.0479 0.0661 0.2463
2004 0.0351 0.1111 1.7561 0.0004 0.2788

2

According to Table 14.4, the number of jumps per year A, ranges from
1.75 to 5.5. On the average, there are 5-6 jumps in a particular year. The
impact of jumps is significant because almost all s? are bigger than 0.2. The
variance o? associated with the Brownian motion part of the model is around
0.2, which gives a daily variance of 0.2/250. When a jump arrives, an extra
daily variance of 0.2 is added to the index return variance to 02/250 + s2.
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This additional variance due to a jump becomes a relatively large quantity.
Jump risk cannot be ignored! This information is useful for risk managers to
construct scenarios for stress testing.

14.4 EXERCISES

1. Suppose Xi,..., X, are independent observations that follow N(u, a?),
where p is a known quantity

(a) Show that the likelihood function L(c?) satisfies

(b} Suppose further that 6% ~ IG{a, 3). What is the conditional dis-
tribution of 02| Xy, ..., X,? :
Hint: Denote p(¢) as the density of the inverse Gamma distribu-
tion. Then we have

p(¢) x ¢—a+le—,5/¢'_

2. A density function with a single parameter, p(z|8), is said to be of
exponential family if it takes the form

p(z|0) = g(z)h(6) exp [t(z)¥(0)] .

Show that normal mean with a known variance, normal variance with a
known mean, Poisson distribution and Binomial distribution are of the
exponential family.

3. Show that if the likelihood function comes from the exponential fam-
ily and the prior distribution is from the exponential family, then the
posterior distribution also belongs to the exponential family.

4. Simulate the daily jump-diffusion VaR of the Dow Jones Industrial Index
based on the data used in Section 5.2.3. Compare your number with
the GED-VaR defined in Chapter 5.

t

. Suppose that z|p ~ Bin{n,p) and p|z ~ Be(x + a,n — z + 3), where
n is a Poisson variable of mean A. Use the Gibbs sampling to find the
unconditional distribution of n where A = 16, =2 and § = 4.

6. Consider the normal distribution with an unknown mean p and a known
variance.

(a) Assume that the prior of y is a discrete mixture of two normal
densities. Show that this prior is still conjugate.
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(b) Assume that the prior of p is a discrete mixture of k¥ normal den-
sities. Is the prior still conjugate?

7. Consider the following transition matrix of a Markov Chain:

|1 2 3 4

1/1/6 0 1/2 1/3
20 0 1/3 1/3 1/3
3/ 0 12 0 1/2
401/4 1/4 1/4 1/4

Use the Metropolis-Hastings algorithm to construct a Markov Chain
whose limiting distribution is (1/6,1/6,1/3,1/3) based on the above
matrix.
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Statistical Arbitrage

15.1 INTRODUCTION

Statistical arbitrage has been a popular device among hedge fund managers
and asset management professionals. It uses statistical learning machineries
to study market prices and trading patterns, to identify arbitrage opportu-
nities, to evaluate profit and risks of possible arbitrage positions and then
uses statistical analysis to develop suitable trading strategies. There exists a
number of commonly used trading strategies. Technical analyses are technical
trading rules based on graphical patterns of the time series of asset prices; see
for example, the discussions given in Malkiel (2007) and Lo, Mamaysky and
Wang (2000). Pairs trading identifies cointegrated time series, which will be
discussed in detail in this chapter. Momentum strategies, are “buy high and
sell higher” schemes, and value and contrarian strategies buy stocks that are
undervalued with respect to their intrinsic value or that are out of favor, see
for example, Hogan, Jarrow, Teo and Warachka (2004), and George and
Hwang (2004). In this chapter, we will primarily focus on pairs trading as it
has a close connection with the notion of cointegrations of Chapter 13. For a
succinct review of the other trading strategies, see Lai and Xing (2008) and
the references therein.

To begin, first consider the question “What is Statistical Arbitrage?” The
reader should be aware that there is no single widely accepted definition of
statistical arbitrage. The term is often used to connote a specific trading
strategy, pairs trading, for example. The following couple of definitions of
statistical arbitrage are available from the internet.
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e from investwords.com

An attempt to profit from pricing inefficiencies that are identified through
the use of mathematical models. Statistical arbitrage attempts to profit

from the likelihood that prices will trend toward a historical norm. Un-

like pure arbitrage, statistical arbitrage is not riskless.

e from investopedia.com

A profit situation arising from pricing inefficiencies between securities.
Investors identify the arbitrage situation through mathematical mod-
eling techniques. Statistical arbitrage is not without risk; it depends
heavily on the ability of market prices to return to a historical or pre-
dicted normal.

In short, we can think of statistical arbitrage as a long horizon trading
opportunity that generates a profit. It is an extension of the trading strate-
gies of the existing empirical literature about persistent anomalies. Statistical
arbitrage involves trading instruments that are different, but whose prices are
mutually inconsistent according to historical price analysis. These price in-
consistencies are identified by statistical techniques. A statistical arbitrage
trading strategy then devises a set of trades on the inconsistently priced in-
struments and expects them to return to their historical relationship. By
identifying persistent anomalies that violate the efficient market hypothesis,
statistical methods can be used to create a trading strategy to generate profit
with high probability.

15.2 PAIRS TRADING

Suppose that an asset price process is governed by a mean reverting process
given by
dXt = a(X - .Xt) dt + O'(Xt) th,

where ¢(X;) is some volatility function. Thus in the long run the asset has
an average price of X. If at time ¢, the price X, is above X, then a trader
could short this asset in the expectation that, if the price process continues to
be governed by this mean reverting process with level X < X, he or she will
be able to sell and close the position at X, thus making a profit. Conversely,
if the current asset price, X; satisfied X; < X, then a trader could go long
in the asset, expecting to close the position at X, again making a profit.
We do not expect stocks to follow such a mean reverting process; however, a
pairs trader looks for a pair of stocks whose price difference follows a mean
reverting process. If one can find such a pair, then when the price of one of
the two (say stock X) is high relative to the price of the other (say stock Y),
then a pairs trader would short a suitable amount of stock X and go long in
a corresponding amount of stock Y. When the prices of the two stocks go
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back into balance, then the trader closes the position. This is an example of
a market neutral strategy. It depends upon prices reverting to their long run
equilibrium values relative to each other. More details about pairs trading
as a statistical arbitrage strategy can be found in Gatev, Goetzmann and
Rouwenhorst (2006). Although pairs trading sounds too good to be true,
several issues need to be addressed:

e How to find stocks X and Y with this long run mean reverting property?
e When to put on the position?
o How much of each stock to buy?

Whistler (2004) describes pairs trading at an elementary level; the ap-
proach involves calculating the sample moments of the individual stocks and
their sample correlations. It is unreasonable, however, to expect the price pro-
cesses to be stationary and new methodology is needed to handle the more
general situation. That leads to cointegration, which generalizes the concept
of correlation to the nonstationary case that was discussed in Chapter 13.

15.3 COINTEGRATION

In short, cointegration was developed as a means of modeling dynamic co-
dependencies in multivariate time series. While the individual series may
themselves be non-stationary, we say that they are cointegrated if we can find
a linear combination that is stationary. In financial econometrics, the essence
of cointegrations is best captured by Alexander (2001): “Cointegration refers
not to co-movements in returns, but to co-movements in asset prices (or ex-
change rates or yields). If spreads are mean-reverting, asset prices are tied
together in the long term by a common stochastic trend, and we say that
the prices are “cointegrated.” Since the seminal work of Engle and Granger
(1987) cointegration has become the prevalent tool of time series econometrics.
Cointegration has emerged as a powerful technique for investigating common
trends in multivariate time series, and provides a sound methodology for mod-
eling both long-run and short-run dynamics in a system.”

15.4 SIMPLE PAIRS TRADING

The basic idea behind pairs trading is very simple. Suppose that two stock
price series tend to move (from day to day) together. They follow similar
patterns over a stretch of time. Occasionally, there will be times when this
common pattern is broken, but eventually the two series tend to be back
in synch again. The idea of the trading scheme is that when the prices are
sufficiently far “out of synch”, one can buy the one that is currently low and
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sell the one that is currently high. Then one waits until the prices get back
“in synch” and unwinds the position at a profit. This strategy will no longer
work, however, if the stocks got out of synch due to a fundamental change in
the relationship between the two stocks. Many questions need to be answered
before one can implement such a scheme.

1. Which pair of stocks should be traded?

2. How much do we buy/sell of each stock?

3. How to determine if the pairs are “out of synch”?
4. How to determine if the pairs are back “in synch”?

5. When do we cut our losses when things go wrong?

There are empirical methods for answering the first question. One way
is to examine the historical paths of all stocks, and choose those pairs that
move together most closely. Specifically, one can standardize all price series
to put them on a common scale (to facilitate interpretation of visual effects)
and computes certain “distances” between all pairs of the standardized series.
Those pairs that have the smallest distances are the ones that have moved
most closely together. The same calculation can be conducted with the log-
arithms of the price series, since these are the processes that are commonly
modelled.

As for the second question, there are several strategies for choosing how
much to invest. One popular strategy is to invest nothing. That is, purchase
the same dollar amount of the long stock as you sell of the short stock so that
the strategy is self-financing.

For the third and fourth questions, a pairs trader typically opens a position
when the absolute value of the difference between the standardized series gets
larger than some multiple of its historical standard deviation. Some traders
use a multiple of two. The larger the multiple, the less frequent a trader
will open a position. Closing positions can be an art. Some traders suggest
waiting until the two standardized series cross again. Others will close when
they have reached a predefined profit target on the trade. As far as the last
question is concerned, it is a prudent idea to have rules about when to bail
out if things are going against you; how much of your investment you can
afford to lose before getting started.

As an example, consider the 42 Hang Seng Index Component stocks. We
obtained stock daily closing prices in 2007. Altogether, there are 262 trading
days. We use the first half, that is 131 days, to form the standardized pairs
and trade in the second half of the data. Suppose that one of our series is
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denoted by X = (X1,...,X131). Define

X = 1312X and
| 1/2
_ - L w)2
s = | > (%~ %) ]

Then create a standardized series Z = (2, ..., Z131) with Z; = (X; — X)/S.
Next compute the “distance” between each pair of standardized series. For a
pair of series Z and W, compute

131

2= (Z:-Wi)* =2(n-1)(1—7), (15.1)

i=1

where r is the sample correlation between Z and W. From (15.1), it can be
seen that the distance between two series is linearly related to their sample
correlation coefficient and is minimized by the pair with the largest sample
correlation coeflicient.

For each series, we can find another series among the other 41 series which
is closest to it in terms of 2. This yields at most 42 pairs to work with. After
eliminating duplicate pairs, we are left with 32 distinct pairs. We consider
the 10 with the smallest §. For each pair, we compute the mean and standard
deviation of the logarithm of the ratio of the stock series for the first six
months of the year. If a pair of series is denoted by X = {X; :i=1,...,131}
andY = {Y;:1=1,...,131}, then compute

131
13lzlogX/Y

] s 2}1/2
— S [log(Xi/Y;) - M2V
{35 2 toaxm)

Starting in July, we begin trading each of the 10 pairs as follows. Each day
1=132,...,262, compute

M

l

log(X:/Y:) - M

D b
until the first day that S; ¢ [-2,2]. If S; > 2, wait until day ¢+ 1 and go short
$1 in shares of X and long $1 in shares of Y. That is, buy 1/Y;41 shares of Y
and sell 1/X;; shares of X on day i + 1. On the other hand, if S; < —2, go
short $1 in shares of Y and long $1 in shares of X on day i+1. Once a position
is open, we continue to monitor S; to see when to unwind the position. The
common strategy is to wait until the first time it crosses zero. This is an
indication that whatever temporary anomaly separated the two stocks has

S; = (15.2)
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Fig. 15.1 Time series of daily share prices of BOCHK and BEA in 2007.

now been forgotten. If any positions were open the last trading day of the
year, they were closed regardless of profit or loss. The reason that we wait a
day before trading is to remove an artifact of bid/ask spread. When a stock
rises, it is reasonable to think that it was sold close to an ask price. When
it falls, it might have been sold near a bid. Waiting a day helps to reduce
the effect of the bid/ask spread on the size of any profits that we compute.
In actual trading, a trader would not need to wait a day to trade, nor would
he/she be working with daily closing prices.

To illustrate the idea of pairs trading, consider the specific pair: Bank
of China Hong Kong (BOCHK) and Bank of East Asia (BEA). Figure 15.1
shows the time series plot of daily share prices of BOCHK and BEA in 2007.
They look very different. To gain more insight about this pair, consider
the standardized series of Figure 15.2. The two standardized series seem to
move together more pronouncedly than Figure 15.1. Figure 15.3 plots the
standardized daily log-ratio of the pair. We devise the trading rule based on
the series Z as follows. A position is open when the standardized log-ratio
between the pair falls outside +2. The position is closed when it returns
to zero. In Figure 15.3, both trading boudaries +2 and £3 are indicated
to illustrate the difference between the two strategies. If the position will
eventually open, one will generally make more profit or lose less by waiting
for a more extreme boundary to be crossed.
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Fig. 15.2 Standardized daily share prices of BOCHK and BEA. The vertical line
divides the first six months from the last six months of 2007.
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Fig. 15.3 Standardized daily log-ratio of BOCHK and BEA prices. Horizontal lines
indicate possible trading boundaries.
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In this analysis, there are totally 18 open positions and 9 close positions,
resulting a profit of $0.67. Table 15.1 presents the details of the trading pairs.
The following is the SPLUS /R code.

daysf<-1 # start day for forming pairs
dayef<-131 # end day for forming pairs
dayst<-132 # start day for trading
dayet<-262 # end day for trading
npairs<-10 # number of top pairs to trade
cutoff<-2 # boundary for opening positions

nstock<-dim(Data) [2]

# form the pairs using largest correlations

Data.cor<-cor(log(Dataldaysf:dayef,]))

pairm<-c(1:nstock)

for(i in 1:nstock)

pairm[il<-sort.list(Data.cor[i,]) [nstock-1]

pairmm<-t (apply(cbind(c(1:nstock),pairm),1,sort))

pairmu<-pairmm[!duplicated.data.frame(
as.data.frame(pairmm)),]

napairs <- dim(pairmu) [1]

toppairs<-pairmu(sort.list(Data.cor[pairmu]),][

(napairs-npairs+1) :napairs,]

profit<-rep(0.0, npairs)

nopen<-rep(0, npairs)

nclose<-rep(0, npairs)

#loop through the top pairs

for(i in 1:npairs) {

stockli<-Datal[,toppairs[i,1]]

stock2<-Datal,toppairs([i,2]]

ratio.mean<-mean(log(stockl [daysf:dayef]
/stock2[daysf:dayefl))

ratio.std<-sqrt(var(log(stockl [daysf:dayef]
/stock2[daysf:dayef])))

ratio.trade<-(log(stockl[dayst:dayet]
/stock2[dayst:dayet])-ratio.mean)/ratio.std

# open.trade is an indicator of what type of position

# is open. It is O when no position is open, 1 when

# we are short in the first stock, and -1 when we

# are short in the second stock

open.trade<-0

profit[i]<-0.0

#begin daily trading

for (j in 1:(dayet-dayst)){
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if (open.trade!=0){

if (open.trade*ratio.trade(j]1<=0.0){

open.trade<-0

profit[il<-profit[i]+nl*stockl[j+dayst]
+n2*stock2[j+dayst]

nclose[i]l<-nclose[i]+1

}

Yelse{

if (abs(ratio.trade[j])>=cutoff){

open.trade<~sign(ratio.trade[j])

ni<-(-open.trade)/stocki[j+dayst]

n2<-open.trade/stock2[j+dayst]

nopen[i]l<-nopen[i]+1

}

}

}

if (open.trade!=0){

profit[i]l<-profit[i]+ni*stockl [dayet]+n2*stock2[dayet]

}

}

result<-cbind{(names(Data[toppairs[,1]]),
names (Data[toppairs[,2]]1), nopen , nclose, profit)

sum(nopen)

sum(nclose)

sum(profit)

Table 15.1 Position and Profit for 10 Traded Pairs
| Stock 1 Stock 2 | Opened Closed  Profit |

0939.HK 2628 HK 1 0 —0.085
0762 HK 2318 HK 1 0  —0.098
0883 HK 0386.HK 1 0 0.016
0688.HK 0267.HK 1 0 0.059
2600.HK 0101.HK 1 0 0.169
0144 HK 0330.HK 4 3 0.233
2318 HK  0386.HK 1 0  -0.127
0012.HK 0004.HK 4 3 0.136
0836.HK 0267.HK 3 2 0.255
2600.HK  0836.HK 1 1 0.111
| Total | 18 9 0.669 |
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15.5 COINTEGRATIONS AND PAIRS TRADING

While the method of using correlation and distance to conduct pairs trading
may be easily implemented, it could sometimes be misleading. Suppose that
two log price series X and Y are random walks plus a common component,
that is,

logX; = logXi—1+2Z;+ e,
logY; = logYi1+ Z; + e,

where the €’s are independent random variables and the common trend is
Z. Then log(X;/Y;) is also a random walk and this ratio cannot be easily
predicted. Yet, the presence of the common component Z would cause the
two individual series to move together closely. Using the elementary method
to conduct pairs trading in this case could be disastrous.

But if log(X;/Y;) is a stationary process, then we would expect it to return
to an equilibrium in the long-run after it diverges from that level. We may be
able to find a linear relationship such that alog(X;) + blog(Y;) is stationary,
which is the same as saying that the two log price series are cointegrated. The
notion of cointegration offers a more sophisticated description of co-movement.

Specifically, suppose that we have two price series, X and Y. We use the
logarithm of the stock prices to form trading pairs. Note that the logarithm of
the stock prices are most likely to be a nonstationary process. Using the idea of
cointegration, there exists a linear combinations of the logarithm of the stock
prices that is stationary, that is, they form a cointegration pair. In this case,
we may find a linear combination of X and Y such that alog(X;) + blog(¥)
is a stationary process. Under these circumstances, we expect the linear
combination to have a mean reverting property so that it will eventually
return to the mean level after deviating from it. Although we may find the
cointegration pairs, it may not be possible to open a position with a value of
alog(X;) + blog(Y;). One way is to use a linear approximation. Suppose that
we open a position at ¢ = 5. By Taylor series expansion, we have

Xy — X

log(X;) ~ log(X3,) + e
to

Thus our position can be approximated as
Xt - X to }/:‘. - Yrto

+b
-Xto Yto

alog(X;) +blog(Y:) ~ alog(Xy,)+blog(Ys,) +a

b
- ‘X +2lv 4k
X, oty T

where K = alog(X;,) + blog(Y;,) — a — b is a constant. In this way, we can
open an approximately stationary position with cX— shares of X and cy
shares of Y for any given value ¢, where ¢ can be c0n81dered as the startmg
initial capital.
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15.6 HANG SENG INDEX COMPONENTS EXAMPLE

To illustrate the idea of cointegration pairs trading strategy, consider again
the 42 stocks of Hang Seng Index Components. In this example, we collect
the daily data from January 1, 2007 to January 1, 2008. We use the first
half of the data to figure out the cointegration pairs and use the second half
of the data to implement the trading strategy. For this example, we use the
finmetrics Module of SPLUS .

15.6.1 Formation of Cointegration Pairs

To begin, we first conduct the Johansen test (see Chapter 13) to determine the
cointegration pairs. For example, we test for the cointegration relationship
between Bank of China Hong Kong (BOCHK) and Bank of East Asia (BEA).
Fit the data in a VAR model to select the order of the AR model. Then
conduct a cointegration test with that order. The SPLUS /R code is given as
follows.

> var.fit<-VAR(log(Data([1:131,1:2]))
> var.fit $ar.order$

{1l 1

> coint.fit<-coint(log(Data[1:131,1:2]1),lags=1)
> summary(coint.fit)

Call:
coint(Y = log(Data[1:131, 1:2]), lags = 1)

Trend Specification:
H1(r): Unrestricted constant

Trace tests significant at the 5/ level are flagged by ’ +’.
Trace tests significant at the 1) level are flagged by ’'++’.
Max Eigenvalue tests significant at the 5% level are flagged by ’ *’.
Max Eigenvalue tests significant at the 1% level are flagged by ’*x’.

Tests for Cointegration Rank:

Eigenvalue Trace Stat 95} CV 99% CV Max Stat 95% CV 997 C
H(O)++** 0.1813 30.9327 15.4100 20.0400 25.7997 14.0700 18.630¢
H(1)+ = 0.0390 5.1330 3.7600 6.6500 5.1330 3.7600 6.650¢

Unnormalized Cointegrating Vectors:
BANK.OF.CHINA. .H. BANK.OF.EAST.ASIA
coint.1 -30.6196 4.9671
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T_

140 160 180 200 220 240 260
Fig. 15.4 Standardized portfolio of BOCHK and BEA prices. Horizontal lines indicate
possible trading boundaries.

coint.2 -2.1926 -25.2464

Unnormalized Adjustment Coefficients:
coint.1 coint.2

BANK.OF.CHINA..H. 0.0042 0.0012

BANK.QF .EAST.ASTIA -0.0007 0.0032

Long Run Impact Matrix: alpha*beta’

BANK.OF.CHINA. .H. BANK.OF.EAST.ASIA
BANK.QF .CHINA..H. -0.1298 -0.0093
BANK.OF .EAST.ASIA 0.0149 -0.0854

In this output, the Tests of Cointegration Rank shows how significant a
cointegration pair is, and the Unnormalized Cointegrating Vectors is the
cointegration relationship. In this example, the test shows that one significant
cointegration vector is estimated as (—30.6196,4.9671). Dividing this vector
by the coefficient of the larger absolute value, the following linear relationship
is formed.

log(BOCHK) — 0.162log(BEA) ~ stationary.
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Now conduct the Johansen’s test on all 42 combinations to construct a list
of 42 cointegration pairs. We use the 10 pairs with the highest Test Statistics,
namely, the 10 most significant cointegration pairs.

15.6.2 Trading with Cointegration Pairs

After forming the cointegration pairs, we construct the trading strategy as
follows. Open a position when the standardized series deviates too much
from the mean. In particular, calculate the standardized series as

7 [log(BOCHK) — 0.1622log(BEA)] — Z

SD ’
where
7= 1 1fi[log(BOCHKi) — 0.1622log(BEA;)]
131 &=
and

131 1/2
L N NIy
SD = { 30 ;([log(BOCHKZ) 0.16221og(BEA;)] — Z) } .

Now open a position when Z deviates from 0 too much, [-2,2], say. For
example, if Z is greater than 2 on day tq, we short (¢/BOCHK,,) shares of
BOCHK and long (0.1622¢/BEA,,) shares of BEA and vice versa. When Z
returns back to 0, we close the position. Figure 15.4 plots the time series plot
of Z. It crosses zero a number of times.

There are altogether 262 trading days for the 42 stocks. We use day 1 to day
131 to construct the cointegration pairs and day 132 to day 262 to trade. The
cut-off boundary is £2. In this analysis, there are totally 29 open positions
and 19 close positions. We invested $1.44 with a profit of $1.21. Table 15.2
presents the details of the trading pairs. The following is the SPLUS /R code.

daysf<-1 # start day for forming pairs
dayef<-131 # end day for forming pairs
dayst<-132 # start day for trading
dayet<-262 # end day for trading

npairs<-10 # number of pairs used for trading
cutoff<-2 # boundary for opened positions

# forming cointegrating pairs of largest trace test statistics
napairs<-ncol(Data)*(ncol(Data)-1)/2
pvalmat.s<-matrix(0,napairs,5)

k<-0

for (i in 2:ncol(Data)){

print(i)

for (3 in 1:(i-1)){
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k<-k+1
fred<-log(Data[daysf:dayef,c(j,i)])
george<-coint(fred,lags=1)
if (george$coint.vectors[1,1]*george$coint.vectors[1,2]>=0){
k<-k-1}else{
pvalmat.s[k,3]<-george$trace.tests$[1]
pvalmat.s[k,1:2]<-c(j,1)
pvalmat.s[k,4:5]<-abs(george$coint.vectors[1,]) /max(abs(
george$coint.vectors[1,]))
}
}
}
coint.sort<-sort.list(pvalmat.s[,3])
profit<-rep(0.0,npairs) # profit for each pair
nopen<-rep(0,npairs) # numbers of opened position
nclose<-rep(0,npairs) # numbers of closed position
invest<-rep(0,npairs) # amount of money invested
# start to trade for each pairs of stocks
for (i in 1:npairs){
ii<-i+napairs-npairs
stockl<-Data[,pvalmat.s[coint.sort[ii],1]]
stock2<-Data[,pvalmat.s[coint.sort[ii],2]]
coefi<-pvalmat.s[coint.sort[ii],4]
coef2<-pvalmat.s[coint.sort[ii],5]
fred<-coefix*log(stockl [daysf:dayef])-coef2*log(
stock2[daysf:dayef])
ratic.mean<-mean(fred)
ratic.std<-sqrt(var(fred))
ratio.trade<-(coefl*log(stockl[dayst:dayet])
-coef2+log(stock2[dayst:dayet])
-ratio.mean)/ratio.std
open.trade<-0
profit[i1<-0.0
for (j in 1:(dayet-dayst)){
# check if we should close an opened position
if (open.trade!=0){
if (open.trade*ratio.trade[j1<=0.0){
open.trade<-0
profit[i]<-profit[i]+nl*stockl [j+dayst]
+n2*stock2[j+dayst] -opencap
nclose[il<-nclose[i]+1
}
}else{
# check if we should open a new position
if (abs(ratio.trade[j])>=cutoff){
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open.trade<-sign(ratio.trade([j])
ni<-coefl*(-open.trade)/stockl[j+dayst]
n2<-coef2+*open.trade/stock2[j+dayst]
nopen[i]<-nopen[i]+1
dayopen<-j
opencap<-ni*stockl [j+dayst]+n2*stock2[j+dayst]
invest [i]<-invest [i] +opencap
}
}
}
# close all the opened positions on last day
if (open.trade!=0){
profit{i]<-profit[i]l+ni*stockl [dayet]
+n2+stock2[dayet] -opencap
}
}
result<-cbind(names(Data[pvalmat.s[coint.sort[
(napairs-npairs+1) :napairs],1]]),
names (Data[pvalmat.s[coint.sort[
(napairs-npairs+1) :napairs],2]]),
nopen, nclose, profit, invest)
sum(nopen)
sum(nclose)
sum(profit)
sum(invest)

Table 15.2 Position and Profit for 10 Traded Pairs
| Stock 1 Stock 2 | Opened Closed Profit Invested |

1398.HK 0019.HK 1 0 0.104  0.204
0267.HK 2318 HK 1 0 —0138  0.133
3988.HK 0083.HK 4 3 0.340  0.000
0688.HK 0836.HK 1 0  —0.013  0.200
3988.HK 0011.HK 3 2 0.035 0.326
0002.HK 0019.HK 2 1 -0110 —0.695
3328 HK  0016.HK 3 2 0.023 —0.111
3988.HK 0001.HK 5 4 0.415 0.701
3988.HK 0016.HK 5 4 0.347  0.686
3988 HK 0019.HK 4 3 0.212 0.000
{ Total | 29 19 1.215 1.442 |
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Comparing Tables 15.1 and 15.2, there are more proportions of closed po-
sition for cointegration pairs trading than simple pairs trading. But the profit
resulting from cointegration pairs trading is higher than simple pairs trading.
Although both trading strategies resulted in a positive gain in this example,
it seems fair to say that the cointegration pairs trading method has a higher
return than the simple pairs trading method. The reader is encouraged to
experiment these methods with other data sets.

15.7 EXERCISES

1. Consider the standardized series Z; = (X; — X)/S for a given series

X;:i=1,...,n, where X denotes the sample mean of the series X;
and
1 n . 1/2
S = Xi—X
e ]

is the standard deviation.
(a) Show that Y., Z; =0.
(b) Show that > , ZZ2=n—1.

(c) If there are two standardized series Z; and W;, show that the sam-
ple correlation coefficient between the two series is given by

2. For standarized series Z and W, show that the Euclidean distance be-

tween them .

62 =3 (Z: - Wi =2n—1)(1 - 1),

i=1

where r is the sample correlation coefficient.

3. Conduct a pairs trading analysis with another pair of stocks from the
Hang Seng Index.

4. Conduct a conintegration pairs trading analysis with another pair of
stocks from the Hang Seng Index.
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Answers to Selected
Ezercises

16.1 CHAPTER 1
1. (a) Plugging the polynomial into the requirement m; = 3 a;m,_;, we
J
have

gcltl = Zaj(zk:cl(t—j)l)

=0

]
)= -
2
TN
™
£

—

L

|

o

~<
N—

Now equate the corresponding coefficients for ¢,1 = 0,1, ... to ob-
tain
co = O Z a4
(S + L)
)
J .
@ = oLl Yai+Yo)

C1

The problem is completed with these equalities.
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el WWWM

(b)

T T T T T
Jan, 50 Jan, 52 Jan, 65 Jan, 57 Jan, 60

Time in months

Fig. 16.1 Time series plot of airline passengers.

Justify these required equalities in part (a). SPLUS will facilitate
the vector computation.

2. Notice that the p-th power terms cancel in ¢,(t? — (¢t — 1)?). Thus the
coefficient of the tP term in Am, is 0. If we apply the A operator
recursively onto this polynomial, the degree of the resulting polynomial
decreases by 1 at each step. Therefore, AP*!m; = 0.

3. The data consist of 144 points, which represent monthly totals in thou-
sands of passengers from January 1949 to December 1960.

(a)

()

There is an upward trend of the data. By inspecting the above
plot, we notice an annual {12 months) cycle. The variance in the
data is increasing with time, thus a transform is needed.

The logarithmic transform is appropriate in this case. As we can
see from the plot, the variance of the transformed data V; = log(X;)
is no longer increasing with time.

The medians rise from 1949 to 1960, hence there is a clear increas-
ing trend. The inter-quantile range also appears to increase, but
only slightly. The range tends to increase from 1949 to 1954, then
it remains almost constant. The boxplots from 1949 to 1951 look
symmetrical, but from 1952 to 1960 they are slightly positively
skewed. We have not noticed any outliers.
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Fig. 16.2 Time series plot of log transformed data.
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Fig. 16.3 Boxplots and yearly running median for the transformed data.
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JanI. 50 Jan‘, 52 I Jan‘, 55 Jany. 57 l Jan‘, 60
Time [n months
Fig. 16.4 Plot of the trend estimate.
(d) There is a seasonal cycle of period 12 (months) starting in January

and ending in December. We estimate the trend using a 13-point
moving average filter running over a complete cycle:

- 1

1 1
T, = 5 (Ext_ﬁ + X5+ ...+ Xigs + §Xt+6) .

The trend is plotted with a dashed line in the figure below.

Use the formula:
et
Si=15 t; Tis12,

that is, take the mean of the observations corresponding to each
month. We drop the first six observations and the last six, because
the filter has 13 points. We plotted the seasonal component in the
figure below. We also include the SPLUS code used to calculate
the seasonal component.

> airline.chop<-as.vector(airline.log(-(139:144)]
+ [-(1:6)1)

> airline.ma.chop<-as.vector(airline.log.ma

+ [-(139:144)1[-(1:6)])
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T T T T T
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(g)

Time in months

Fig. 16.5 Estimated seasonal components.

airline.diff<-airline.chop -~ airline.ma.chop
airline.diff.mat<-matrix(airline.diff, 11, 12,
byrow=T)
airline.season<-apply(airline.diff.mat, 2, mean)
airline.season.good<-c(airline.season[7:12],
airline.season[1:6])

airline.season.good

[1] -0.086681022 -0.115278832 0.017247592

[4] -0.013911471 -0.009831918 0.114527016

[7] 0.209950615 0.203646676 0.063970685
[10]-0.076136841 -0.216711488 -0.101180870

vV 4+ V.V + V V

There is a small peak in December during the winter holiday. The
traffic drops from January to March, then it begins to increase
until July and August, when we can notice a huge peak during the
summer holiday. The traffic drops fast until November, when it
starts to increase again.

The deseasonalized data does not exhibit any seasonal component,
as expected. All we can see is a steady increasing trend. We
estimate this trend again using the same formula as in (d).

The residuals 7 = X; — m; — 9: do not show any clear pattern,
although they do not look like white noise either. The variance is
increasing and decreasing over time, hence further analysis might
be needed.
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Fig. 16.6 Estimated trend for deseasonalized data.
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Fig. 16.7 Residuals plot.

CHAPTER 2

(a) Write Alth = (1 - Bm)Xt = Xt — Xt_12 = 12,6 + Zt - Zt_lg.
Denote Y; = a + Z; — Z;_12, where a = 128. Now show that
(Y:); is a stationary process. We have E(Y;) = a and Var(Y;) =
Var(Z;) + Var(Z;—12) = 2. Hence, E(Y?) = Var(¥;) + [E(Y2))? =
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2 + 1444% < o0,V t. Also

vy(r+t,s+t) = Cov(Yrye,Yere)
= Cov(Zryt, Zs+t) — Cov(Zrye—12, Zsit)
+Cov(Zrtt—12, Zstt) + CoV(Zri1—12, Zoyt—12)
—Cov(Zryt, Zoyt—12)
= Cov(Z, — Zr_12,Zs — Zs-12)
= Cov(Y¥;,Ys)
= ~y(r,s), Vst

Therefore, {Y;,t =1,2,...} is stationary.
(b) We have

Alth = X;- Xt 12
= (12ﬁ)5t +Zy — Zi_19.

We still have seasonal factors {S;}, hence we haven’t obtained a
stationary process. Use the operator A%,. Let Y; = A%, X,,Vt =
1,2,.... Then,

Y,=(1-B%%X,=(1-2B2+B*)X, =2, —2Z;_12+ Z_2a.

Clearly E[Y;] = 0 and var(Y;) = 6. After some simple calculations,
we can also show that vy (r +t,s + t) = yy(r,s),Vr,s,t. Thus
{Y:,t =1,2,...} is stationary.

2. We need the following formulas:

sin (2L h) cos (z + %h)

2
sin(é’-) ’
sin (2L h) sin (z + "—zh)

Y

cos(x) + cos(x + h) + ... + cos(z + nh) =

sin(z) + sin(z + h) + ... + sin(z + nh) =

where h # 2km, k € Z. We have

_ n n Asi - -
X=%2Xt:§§ :COS(tw): Sln(if LU)COS( 5 )
t=1 t=1

nsin (%) ’
and

n—k
Ck = Z(Xt - X)(.Xt+k - X)

t=1
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This implies

Ck

n—k X2
ﬁ |

= Z [cos(tw) cos((t + k)w) — %[cos(tw) + cos((t + k)w)] + ik

t=1

After some algebra and using the double angle formula, we obtain

n—k
Z cos(tw) cos((t + k)w) = (n —_ k) cos(kw)
sin[(n — k + 1)w] cos(nw)
2sin(w) ’

n—k n—k n—k

Z[cos(tw) cos((t + k)w)] = Z cos(tw) + Z cos((t + k)w)

_ sin (ﬂ‘—’;ﬂwz C())S (2Ew)
+sin (";gﬂw) cos (kw + 25%w)
sin (%)

It follows that

Ck n—k sin [(n — k 4 1)w] cos(nw)
Az < 2 )Co“kw)+ 2 sinw)
sin (% w) cos (%) sin (2=5t1y)
nsin®(%)

n—k _ kw + n—k
cos 7w cos { kw + ——w
sin? (24L0) cos? (1)

n?sin® (%)

Therefore lim ng% = 2‘%’“—“’1,\1 k=0,1,2,... Therefore, we conclude

n—0o0

lim rp = lim — = = cos(kw).

n—oo n—oo (g lim

C, lim (n_c,;%) cos(kw)
(ngx

3. (a) r3(b) r4(c) r5(d) rl(e) r2.
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16.3 CHAPTER 3

1. All processes are of the form ¢(B)X; = 8(B)Z;. We apply theorems 3.1
and 3.2, the result given in example 3.3 and problem 3.3. All roots are
rounded to 2 digits after the decimal point.

Item &(B) 6(B)

() 1+0.2B-0.48B2 1

(b) 1+1.9B+088B? 1+0.2B+0.7B2

(c) 1+0.6B2 1+1.2B

(d) 1+1.8B+0.81B2 1

(e) 1+1.6B 1—0.4B+0.04B2

Ite r;(()zgs)zfgr r(;(zt;()s):fc())r causal invertible

(a) 1.67, —1.25 none yes yes
(by —091,-1.25 -0.14+1.199 no yes
(¢c) 1.29¢, —1.29¢ -0.83 yes no
(d) -1.11 none yes yes
(e) —0.62 5 no yes

Note all the characteristic functions in these five cases can be viewed
as quadratic polynomials (possibly degenerated). In Problem 3.3, we
actually can prove that the three inequalities are both necessary and
sufficient for invertibility, although only necessity is required (see below).
Also note that causality is symmetric to invertibility, so the conditions
on invertibility in problem 3.3 can be transferred to check causality.
With both necessity and sufficiency proved, we can check the causality
and invertibility just by verifying these inequalities, without solving for
roots.

2. We can easily show by induction that

k

Yo=—Y 67Zu; + ¢ Y41,
j=1
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Since (Y;): is stationary, we have EY;2 = ||Y;||> = constant, Vt. We
obtain:

2

k
Y+ Z ¢-th+j = ¢_(2k+2)||Yt+k+1H2 — 0, ask — oo.
j=1

w .

Therefore, Y; = — Y ¢77Z;4;, Vt. Consider W, = Y; — ¢~ 1Y;_,. We
i=1

can write

Wi = ¢7%Zi—[1—¢7 % (E ¢_th+j). Hence, E[W;] = 0 and Var[W;] =

Jj=1

%;. Using moment generating functions, one can prove the following:

Lemma 1 Let X,..., X, ... be mutually independent random variables
with X; ~ N(p;,02). Let (6;)i=1,n, (bi)i=1,n be fized constants. Then

Zn:(a,-Xi +b)~N (i(aiﬂi + bi), Zn:a?03> :

i=1 i=1 i=1

We apply the above lemma for (Z;) and let n — oo. It follows that

2

o
W,ﬂ\aWN(O,F),VnZl.

Note that (V;); is causal AR(1) because |¢~}| < 1.
3. Follows from a symmetry argument in example 3.3.

4. (a) Let the mean, variance and the ACF of the stationary process
{X:} be u, 02 and p(k), respectively. We have E(Y;)= E(X;) +
E(W;)=p+0=p and Var(Y;)=Var(X;) + Var(W;)= o2 + ¢2. Also,
for r > 0,

COV(Y;, Y;H*T) = COV(Xt, Xt+7') + COV(Wt, Wt+‘r)
= dgp.,.,
which is independent of ¢. Thus {Y;,t =1,2,...} is stationary.
(b) Note that

Ue = ¢(B)Y;
$(B)X: + ¢(B)W,
8(B)Z; + $(B)W;
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can be regarded as a sum of two independent processes following
MA(p) and MA(q), respectively. Thus it is r—correlated and hence
is an MA(r) processes, where r=max(p, q).

Since ¢(B)Y; is an MA(r) processes, we conclude that {Y;} is an
ARMA(p,r) process.

5. Observe that
Var(Y;) = Var(A) sin®(wt) + Var(Z;) = sin®(wt) + o2
depends on ¢t. Thus {Y;} is not weakly stationary.
6. Observe that

E(Y;) = E((-1)'2)=(-1)'E(2),
Cov(Yy, Yiur) = (=1)**"Var(Z) = (-1)"Var(Z).
Follows from Definition 2.5, the necessary and sufficient condition on Z

for {Y;} to be weakly stationary is that E(Y;) = (—1)*E(Z) equals a
constant. The only possibility is that E(Z) = 0.

7. (a) Since
¥(0) = Var(Z;—0Z;—;) = (1 +6%)0?,
¥(1) = Cov(Z; —0Z;_1,Z; ) — 0Z;_3) = —f0>
v(k) = 0 for k>2,
we have

1 k=0,
0 k>2.

(b) p(1) = —%; = 0.4 implies 26% + 50 + 2 = 0. The solutions to the
above equation are # = —2 or —0.5.

6 = —0.5 is more preferable since {Y;} is stationary under this 8.
(c) Note that

o0
Var(Y;) = Var(Z,)+C? ZVar(Zt__,-)
J
o0
= 02+szaz = o0.
J
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So Y; is nonstationary.
(d) We have

Xy = Y1-Y
= Zi+C(Zy 1+ Z4o+...) =241 —C(Zp—2+ Zit-3+...)
Zt + (C — l)Zt_l.
Thus X; is a stationary MA(1) model.
(e) Using the result of (a), we have

1 k=0,
px(k) = { ~treomyr k=1,
0 k> 2,

where px (k) is the autocorrelation function of {X;}
(a) The given time series can be expressed as

(1-04B —-0.45B%Y; = (1+ B+0.25B%)Z,, or

(14 0.5B)(1 — 0.9B)Y; = (1 + 0.5B)(1 + 0.5B) Z..

Thus the model is of order (2,0, 2).
(b) We can simplify this equation by canceling the term (14 0.5B) on
both sides. The time series become
(1 - 0.9B)Y; = (1 + 0.56B)Z,

and the order is (1,0,1).

(c) This process is of the form ¢(B)X; = 6(B)Z;. We apply theorems
3.1 and 3.2. Since the roots for ¢(z) = 0 and 6(z) = 0 are lying

outside the unit circle (—% and —2, respectively), this model is
causal and invertible.
(d) We have
Y, = (1-09B)"'(1+05B)Z,
= ) (0.9B)*(1+05B)Z,
=0
= (1 +0.9) 0.971BI + 0.520.91'—131') A
i=1 j=1
- (1 + 1.420.91-131)4
j=1

= Z;+14) 09717,

=1
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Therefore, 9o = 1 and ; = 1.4(0.9)7 1.

(e) We have
Z, = (14+05B)7}(1-09B)Y;
= ) (-0.5B)(1-0.9B)Y;
Jj=0
= <1 —-05 Z(—o.s)f-lBJ’ -09 Z(—O.S)j‘lBj)Yt

Jj=1 i=1

(1 —14 Z_:(—O.S)j_lBj) Y

= Z,—-14) (-05Y7'Z, ;.
i=1

Therefore, 7y = 1 and m; = —1.4(—0.5)7~1.

16.4 CHAPTER 4
1. (a)

Zt = Yt + 0Zt—1
Y; +6Yi + 62,
-+ keep replacing Z; with Y; + 67,
t—1
= Z ak},t—k + etZO.
k=0

Assuming Zg = 0, the last equation gives

t—1
Z,=) 6" k. (16.1)
k=0

NgE]

Therefore, S.(6) =
the Y;’s in (16.1).

Z2, where each Z, is expressed in term of

t=1

]

(b) With the initial value 8, = 6, equation (4.2) of the text becomes

Z:(0) = Z,(6o) + Z{(60)(6 — o),
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where Z{(6p) is the derivative of Z; with respect to 6 evaluated at
fg. Therefore,

S.(8) = > zZ})
t=1
= 3" (Zi(Bo) + Zi(60)(6 - 60))°

= af*+b+c,

where

a = i Z’(eo y

=1

o

b = 2ZZ¢' 60)(Z:(8o) — 60Z;(0)),

t=1

and c is some constant which does not depend on 6. If we assume
that at least one Z;(6g) is not zero, then a > 0 and the polynomial
ab? + b + c is minimized at 6; = —5%, where a, b are given in the
above.

(c) By differentiating both sides of the defining relation ¥; = Z, —
0Z;_1, we have

ZI(0) = Zo_1(6) + 62!_,(6). (16.2)

Since Z{(6) = 0 by the setting, using (16.2), we can compute Z;(6)

from Zy(#) = 0, Z4(6) from Z{(6), ..., and all the way to Z (6).
(d) Gauss-Newton method is used for optimization, in particular for fit-

ting nonlinear models, as described in Section 9.3 of Myers (1990).

2. (a) The deduction of (4.4) is complete.
(b) The log-likelihood function is

n n 1 1
Mo, 7) = —3 log 27 — 2 logT + 3 log(1 — ¢>2) - ;S(d}),

where 7 = 02. Let (¢,7) be the MLE of (¢,7), then

nL )‘(¢a T) = 07
9 ‘(:ﬁ,r):(é,f)
and 5
a_ )\((]5, T) =0
T l(¢m)=(d,7)
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Therefore,
]. d 2 1 N _
379, 8L~ #) = 525 B) =0, (163)
and )
n “
—— = 16.4
57 T 3:39(9) =0, (16.4)
where S’ = %. From (16.4), we get
F= —S(¢). (16.5)
n

We replace 7 with ﬂn@ in (16.3) to obtain

4 N
d¢|¢=qsl°g(1 " %6°

N =

which is equivalent to

(—;1;108(1—¢2)+log5(¢)> 4] g =0, 166)

de ]¢=43 d¢ L:J,

where

1) = - og(i - ) + og  £5(6)).

For large n, l(¢) ~ log (25(¢)), and 15(¢) is a polynomial of ¢
with degree 2 and the coefficient for the ¢? term is

1 n
= <_y1 + ZYL) :
n t=2

which is positive for large n. Therefore, for large n, the root of
dl/d¢ = 0 is unique and minimizes I. By (16.6), ¢ is a root of
dl/d¢ = 0, so it is the minimizer of [.

3. By the assumption that (1) is AN(¢, (1 — ¢2?)/n), thus

Vn(p(1) - ¢)
BT

It follows that (1) converges to ¢ in probability, so

— N(0,1). (16.7)

— 1 in probability.
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By Slutsky’s theorem, we obtain

VA — ) _ Vap()~9) V1=
=512 V1@ 107

To construct a 95% confidence interval for ¢, note that for large n, we
Vn(p(1) — ¢)

have
P
[ 1- 517

where 2(0.975) is the 97.5% quantile of a standard normal random vari-
able. Therefore, the set

s - o v -9
SRVETO:

= [ﬁ(l)—z(0.975) %,ﬁ(1)+z(0,975) % ,

— N(0,1).

< z(0.975)} = 0.95,

< z(0.975)}

is approximately a 95% confidence interval for ¢. For n = 100, 5(1) =
0.638, we can get S = [0.487,0.789]. Since 0.7 is in the 95% interval, we
accept the hypothesis that ¢ = 0.7.

Alternatively, we can deduce the confidence interval for ¢ directly from
(16.7), not substituting ¢ by 5(1) in the denominator. This approach
involves solving a quadratic inequality. The resulting confidence interval
is different from the one above but also includes 0.7.

(a) The given AR(2) process can be expressed as
(D(B )Yt = Zy,

where ®(z) = 1 — ¢z — ¢?22. The roots of ®(z) = 0 are —%@
and —1—'2%@. By Theorem 3.2, the process is causal if | — %| >1
and | — %5| > 1, which reduce to |{¢| < 3%1-

(b) Multiply Y; throughout by Y;_ for £ = 0,1,2 and take expecta-
tion, we arrive at the Yule-Walker equations

2

1-0.687¢— 0612 = 5%z,
0.687 — ¢ — 0.687¢2
0.61 - 0.687¢ — ¢* =

=3

1

==

Solving the above equations, we have ¢ = 0.509, 02 = 0.298,
rounded to 3 digits after the decimal point.
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5. (a) Multiply Y; throughout by Y;_ for k¥ = 0,1 and take expectation,
we arrive at the Yule-Walker equations

{ p(0) - gp(1) = 1+6%—6g,
p(1) — ¢p(0) = 9.
Solving the above equations, we have p(0) = —1%#, p(l) =

o—0—¢6%—0¢
-¢ .
(b) An AR(1) model can be interpreted as an ARMA(1,1) model
Y. - Y1 =2,-0Z;,,

with = 0.

Substitute 6 = O in the given theorem, the standard error of the
MLE (¢) is -; (1 ¢?), which is equal to ¢~? times the standard
error of the MLE (¢) using AR(1) model. As ¢ < 1 for causal

AR(1) process, the standard error of the MLE Zqﬁ) is larger if we
overfit the AR(1) model by the ARMA(1,1) model.

6. (a) By the method of completing square,

E(Ys —bY2)? = E(Ya)?+ b2E(Y2)? — 2bE(Y,Y3)
= (1+02)+b2(1+62)—2b( -0)
02
_ 2
= (1+090+ 1+02) 1462

The mean square error is minimized if b =
is the lag-1 autocorrelation function of {Y;}.

1+0 = p;, where p;

)
(b) Follows directly from Example 4.4. with p, = — T
(c) Follows directly from Example 4.4 with p; = —-1%7 and p; = 0.

(d) Solving for ¢y in

p(0) p(1) ... p(k-1) Pr1 p(1)
( p(1) p(0) ... p(k-2) ) : :
p(0) Prek p(k)
with p(0) = 1, p(1) = —H—"og and p(k) = 0 for k > 2. Albeit
tedious, we have
6k (1 — 6?)

¢kk=——1__9:2(k_+1) fOI‘ k22

7. (a) r2, since both ACF and PACF decay.
(b) r3, since ACF shows cut off at lag 2 and PACF decays.
(c) rl, since ACF decays and PACF shows cut off at lag 2.
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16.5 CHAPTER 5

1.

2.

(a) The key things to notice about the airline data are: 1) the over-
all trend and the seasonal trend are increasing with time so a log
transform is necessary; 2) there is a significant seasonal component
of length 12 months that needs to be accounted for, with a reason-
able method being a period 12 component to a SARIMA, 3) after
removing the seasonal trend, the data aren’t really stationary so
taking lag one differences improves matters a lot. The next step
is looking at the ACF and PACF plots for the differenced (lags
1 and 12) data, which show activity at lags 1, 12, and possibly a
few other places. We should now try several models, checking the
residuals and comparing the AICs. A SARIMA (0,1,1)(0,1,1)12
fits well, producing nice residuals, as well as a lower AIC than any
other SARIMA with p and ¢ equal to 0 or 1 for both parts. We
could also look at an MA(13) on the differenced data, and retain
only the most significant coefficients, which may give us an even
lower AIC, although the residuals may not be quite as good, de-
pending on the particular model. We select as our final model the
model which has the lowest AIC of those models which have nice
residuals.

The Exchange Rate data contain 470 observations of the weekly ex-
change rate between the U.S. Dollar and the Sterling pound for 1980
1988.

Before we perform a time series analysis on the data, we first look at the
time series plot, the ACF and the partial ACF plots of the raw data.

The time series plot shows a downward trend from 1980 to 1985 and an
upward trend from 1985 to 1988. There is not much seasonality. The
ACF decreases slowly and the correlations are highly significant for all
of the first 25 lags. This suggests that the data are not stationary and
therefore need to be differenced.

We perform a lag 1 differencing on the Exchange Rate data using the
following SPLUS command:

> dexchange _ diff (exchange,1)

Now, we look at the time series plot, the acf and the pacf plot of the
differenced time series.
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From the time series plot, we see that differencing the data eliminates
its trend. The ACF and PACF are within the 2/1/n boundary except for
lag 25. However, the sample correlation as an estimate of the underlying
correlation structure cannot be trusted for large lags. So, we can say
that the differenced series seems to behave like a white-noise sequence.

We conclude that ARIMA(0,1,0) is appropriate for the Exchange Rate
data. This implies that the weekly difference of the exchange rate follows

a white-noise sequence, or the weekly exchange rate follows a random
walk.

CHAPTER 6

. Note that for any constant c,

G(c) := E(Y —c)  =EY?-2cE(Y) + %,

G'(c)=-2E(Y)+2c=0 if ¢c=E(Y). (16.8)
Thus G(c) is minimized when ¢ = EY'.
Consider the MSE
E(Y - g(z))* = E[E(Y - ¢(X))?|X] = E[E((Y - g(2))*|X = 2)].
For any given X = z g(x) = z is a constant and consequently, according
to (16.8), g(z) = E(Y|X = z) minimizes the quantity E((Y —g(z))?|X =

z). Since this is true for each z, it is also true that E(Y|X) minimizes
the MSE.

(a) Rewrite
Xi—p=¢Xe1 —p)+ 2t —0Z;_;.

Then

n1 B = O(Xn —p)+ 00— 02y,

mrg— = O(Xpy — )+ 6o,

meh—# = (Xpip—u)+b for h2>2.
Recursively, we get

Xt = p+¢"(Xa—p)—¢""'02, for h> 1

(b) Thus X, — pas h — oo for [#| < 1. That is, the long term
forecast tends to the mean of the series.
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(c) Rewrite the ARMA(1,1) model as
o}
Xe = %iZis,
i=0

where 1; can be solved in terms of 8 and ¢, see exercise 8d) in
Chapter 3. Thus

h—1
Var(ei(h)) = Var(Xnin — Xpyp) =03 3 97
=0
[e o}
— 0% ZQ/)? = Var(X;) as h — oo.
=0

3. Below is a function performing a Holt-Winters prediction. It makes use
of the built-in minimization algorithm nlminb.

holtwint_function(y,numpred){

yhatcalc_function(alpha,beta,y){

n_length(y)

yhat_rep(0,n)

ahat_yhat; bhat_yhat

ahat [2]_y[2]; bhat[2]_y[2]-y[1];

for(i in 3:n){

ahat [1] _alpha*y[i]+(1-alpha)*(ahat [i-1]+bhat[i-1])
bhat [i] _beta*(ahat[i]-ahat [i-~1])+(1-beta)*bhat [i-1]
yhat[i] _ahat [i]+bhat [i]

}

return(list(yhat=yhat,an=ahat [n] ,bn=bhat [n]))

}

errorcalc_function(para,y){
alpha_parali]

beta_para(2]

n_length(y)
temp_yhatcalc(alpha,beta,y)
yhat_temp\$ yhat
return(sum((y[3:n]-yhat[3:n])"2))
}

x0 <-runif(2)
temp2_nlminb(start=x0, obj=errorcalc, y=y)

alphahat_temp2\$ parameters[1]
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betahat_temp2\$ parameters[2]

temp3_yhatcalc(alphahat,betahat,y)
an_temp3\$ an
bn_temp3\$ bn

prediction_an+bn*1:numpred
return(list(alpha=alphahat,beta=betahat,pred=prediction))
}

The prediction results for t = 73,..., 78 are 9270, 9313, 9355, 9397, 9440,
and 9482, respectively. The Holt-Winters forecast is worse than the
forecast given by the ARIMA model. This shows that ARIMA model
does a better job in forecasting series with seasonal trend.

. First, the data are differenced to make the series relatively stationary.

Fitting the data with ARMA models, ARMA(10,10) gives the best AIC.
Then forecast with that ARMA(10,10) model and undifference the fore-
casted value. This gives us 6.01, 6.05,5.98, 6.09, 6.40, 6.57. This forecast
is worse than that in the example. This shows that logarithm transform
improves the modelling and forecasting performance.

. From the definition of Pg, in Section 4.7,

Popiyvi..yaYoth =00+ oYi=ao+pu) o+ a:Xi, (16.9)

i=1 i=1 i=1

Popix1,. X} Xnth = Z BiXi,

i=1

where {c;} and {3;} minimize E(Y, 11— Pap(1,v;,....v,} Ynth)? and E(X i n—

Pgix,..., x,,}Xn+h)2, respectively. We want to show that

n
a0+,u2ai=u and o;=f; for i>1,

i=1

sothat Py, ,....va} Yath = B+Papixy,.. xa} Xngh Now ao+p Y0, o =
p follows from (16.9) and the fact that EPg,(1 y,,....v,} Yat+h = E(Yn4n) =

.
Finally, note that

n 2 n n 2
E(Yn+h—ao—zaiyi> = E(Xn+h—zaixi—ao+li—#zai>
1 1 i=1
n 2
E(Xn+h -3 aiXi) .
1
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Thus {o;} is also the minimizer of the quantity
E(Xptn — Ps‘p{Xl,...,Xn}Xn+h)2, so a; = B; for ¢ > 1 follows from the
uniqueness property of linear projection in the Hilbert space.

16.7 CHAPTER 7

1

2.

Ifk=h, [ exp*~M*d) = [T d) = 27. Otherwise,

x i(k—h)A 7™
i(k—h)A I s
[ewema = S5
_ [cos(i(k ~ R)A) + isin(i(k — h)A)]"
N 2i(k — h) .
= 0.

(a) Note that y(h) = y(—h) when X, is stationary. Let k = —h,
1 e o}
O = 5 Y ek

—k=—00

1 « k(=
= o= D exp M Vq(k)

k=—o0

= f(=N.

(b) The first result follows from the fact that

E <| i Xre—irA|2>

r=1
— E[(i Xre—i'r)\) <i Xpeip)‘>:| — E(Xn:zn:XrXpei(P—T))\)
r=1 = r=1p=1
= i 2":7(7‘ — )i = Z Z ¥(r - p)e®
r=1p=1 h=-n r—p= h,
1<r,s<n
= Xn: 7(r — p)e®= Zn:
h=-n r—p= ha
1<rs<n

= 3 e n—Ih]).

h=—n
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We show the second result by proving that |f(A) — fn(A)| < 6 for
any § > 0 as n — oo. Note that Y ,____ ~y(h)e™®* = 2nf()) is
finite, thus for some nq,

Z 'y(h)e_“”\ < g for all n > mn,.
|h|2n
The result follows form
h —1
2wl fN) - ) = | 3 By
|h|<n1
h —i —i
Y Bogems 7 qme
ni1<|h|<n |h|>n
|h| —ina| , 0 @
< 1Y e ™ S+ o
P n 2 2
— 04+46=04.

(c) Since f,(A) > 0 for all integers n and fr.(A) — f(A), f(A) >
(d)

i F(\e*rds = /1r e* Z exp~ " y(h)dé

- —h—~oo

— / i(k—h))\,y(h)d(s

T —h=-c0
1 T
- Z ~(h) / etk=PAgs
27 i _r
= %'y(k)%r by exercise 1
= (k).

The interchange of the integral and the summation sign is valid
according to Fubini’s Theorem since

/ Z exp’('C M)A ~(h)| db
T _h=—o00
OO

/_ ~(h)d§

T —_h=—c0
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by assumption.

Finally,
/ i fN)e*Frds = i f(X) cos(k\)ds + i i F(A) sin(kX)dd

= /_7r F(A)cos(kA)ds,

since f(A)sin(kA) is an odd function of A.

3. (a) Assume {X;} {Y:} be independent and let uy, px, uy and vy (h),
vx(h),yy (h) be the mean and autocovariance function of V;, X;
and Y;, respectively. Since py = E(V;) = E(X: + Y3) = ux + uy
and () = Cov(X + Yo, Xen + Yorn) = 1 (h) + 7y (h).

Thus V; is stationary if X; and Y; are stationary. Finally,

) = o 3 e M aw(h)

h=—o00

R i
= Z exp™ ™M (yx + v )(h)
h=—o00

_ il;h;wex;a-ih*wx)(h)-;; 2 e M)

h=—00

= fx(A) + fr ().

(b) X is an AR(1) process and W, is a white noise process. By Ex-
amples 7.1 and 7.2, we have

O = o s

X ~ 2m1—2acos(A) +a?’
o2

fr) = o

Thus the spectral density of {V;} is

02 2 — 2acos(A) + a?

fv() = =fX(’\)+fY(A)=—2_7;1—2acos()\)+012'

—dw 2
4. (a) Using the formula f(w) = %; Z(i—’”) , we have
Foy= 1 ! 1
T 2w |1-0.99e3% | T 271 -2 x 0.99cos(3w) + 0.992°
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Spectral density of X Realization of X Realization of Y
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Fig. 16.10 Spectral densities, realizations and periodograms of X and Y.

(b)

From the plot, the spectral density has a peak at w =~ 2?", indicating
a period of 3.

Clearly, the plot of realization suggests that the data have an os-
cillatory behavior with a period of 3. Also, the periodogram has
a peak at about 1/3 supporting the previous conclusion that the
period is 3.

Calculating the exact spectral density for Y; is tedious. But we can
use the approximation

1 1
Y, = E(Xt—l + X + 099X, 5) + §Zt+1 ~ Y 1+ Z{,

where Z; = %Zt+1 ~ WN(0,1/9). Thus the spectral density of
{Y;} is approximately

S| 1
fr() T 36m1- cos(w)’

9] 1
T or (1 —emw

At w = 27/3, direct computation gives f(w) ~ 1600 and fy (w) =
0.006. Thus the filter removes the oscillations of {X,}.

From the series plot and the periodogram of {Y:}, we conclude that
the filter removes the osciallations behavior.
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Series: y
Smoothed Periodogram

10
1

spectrum
0
1
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bandwidth= 0.0043589 , 95% C.I. is ( -2.68553 , 3.90889 )dB

Fig. 16.11 Periodogram of an AR(2) process.

5 (a)
2
1 1
A)=— - -
f& 21 |1 — 1™ — goe 2
1 1 1
T o9r1-— ¢1e‘i)‘ _ ¢2e—2i)\ 1— ¢1ei)‘ — ¢2e2i,\
1 1

21 1+ ¢2 + ¢2 — 26 cos(N) — 262 cos(2X) + 2612 cos(N)

(b) Solving 1 — 0.4z + 0.722 = 0 gives z = % & J@i. Since |2| =

4 | 66 :
75 + 29 > 1, the process is causal.

The periodogram shows a peak at frequency w = 0.2, meaning that
there is some periodicity in the data. It is consistent with Example
3.3, which stated that an AR(2) process with complex conjugate
pairs of characteristic roots shows pseudoperiodic behavior.

6. Let Z, = Acos(nt/3) + Bsin(nt/3) so that X; = Z; +Y; where Z, and
Y; are independent. By summation formula of trigonometric function,
it is easy to verify that vz(h) = v? cos(mh/3) = Jv2eth™/3 4 Li2e=ih/3,
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{Y;} is an MA(1) process with vy (0) = (1 + 2.5%)02 = 7.2502, vy (1) =
2.502 and vy (k) = 0 for A > 2. Thus,
1x(h) = yz(h) +yv(h)

1 ) 1 )
= 51/26"”/ 34 51/26_”"'/3 + 140} (h)7.250% + 113 (R)2.50%,

where 174)(z) = 1if z € A and 1(4}(z) = 0 otherwise.

From the discussion on page 80, we have

Fz(\) = Z v?)2 for —m<A<m,
F A <A

where j = 1,2 and (A, A2) = (—7/3,7/3). Also,

o0

1 _inx _ 7.250%  50%cos())
) = 2m h=Z_oo7Y(h)e =T YT
A 2 2
7.250 507 sin(A)
'3 = = - 7,
v (A) fr(uw)du o (A+7)+ o

-7

Finally, the spectral distribution function of {X.} is Fx()\) = Fz(A) +
Fy (), which is implied by the result in Exercise 3a.

Spectral analysis are performed each of the time for the series, the log-
series, the differenced series and the differenced log-series. No peak is
observed for all periodograms. This shows that there is no periodocity
in the Treasury Bill data and it is consistent with the previous time
domain analysis.

CHAPTER 8

Use the following codes:

bmsim_function(n){
e_rnorm(n)/sqrt{n)

s_cumsum(e)

t_1:n/n

return{list (t=t,s=s))

}

bm100_bmsim(100) ;bm500_bmsim(500); bm1000_bmsim(1000)
par (mfrow=c(3,1))

plot (bm100$t,bm100$s,type="1")
plot (bm500$t,bm5008s, type="1")
plot (bm1000$t,bm1000$s,type="1")
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Fig. 16.12 Sample path of standard Brownian Motion.

2. There is no standard answer for this question. Below is a SPLUS function

simulating the a quantile of the limiting distribution of the unit root
statistics.

urlimdist_function(n,r,alpha){

#n is the length of each sample path of a Brownian motion.
#r is the number of path (repetition).

#The greater the n and re, the better the approximation.
stat_rep(0,r)

t_1/n

for(i in 1:r){

e_rnorm(n)/sqrt(n)

W_cumsum(e)

stat[i] _sum(W[1:(n~1)I*e[2:n])/(sum((W[1: (n-1)]"2))*t)

}

quantile_round(alpha*r)

criticalvalue_sort(stat) [quantile]

return(criticalvalue)

3

Note that the SPLUS program accomplishes the following steps:
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1 Simulate a sample path with length n of a standard Brownian motion
and obtain a realization of the limiting distribution according to

(8.9).
2 Repeat 1 for r times to obtain a sample of the limiting distribution.

3 Find the « quantile from the simulated sample obtained in 2.

16.9 CHAPTER9

1. (a) Taking expectation on both sides of the ARCH(1) process, we have

E(o}) = ao+mE(e )E(0]_;) = a0 + E(e}),
since E(e?_,) = 1 and E(¢2_;) = E(0?). Thus E(0?) = ap/(1—1).
Now
E(o}) = E(of+2a0mo}_jef_; +aiot 1€t )
= of +2a01E(0]_)E(e_;) + oiE(0}_1)E(e;_)
203
= o} + = +30iE(s}),

since E(of_;) = 3 and E(of_,) = E(o}). Solving gives
t—1

o l+o
1—(111'*3(1%1

E(a})

E(X{) = E(o})E(e;) = 3E(o})

- 3 &g 21—&%
B l1-a;/ 1-3a?

_ gl-ad
1-3a%’

if ag/(1 — 1) = 1.

E(Ut2+j |Fi1) = E[E(Ut2+j|]:t+j—2)|]:t—1] =ao + E(Ut2+j—1|-7:t—1)
= 2aO+E(Ut2+j_2|.7:t_1) = ...
= jao +E(0}|F-1)

- 2
= Joo+oy,

since o? is F;—1 measurable.
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3. Let X; be a GARCH(2,3) model satisfying
2 2
of = a0+ i, Bioi; + Zj:l antz—j‘
Then,
X = i+ (X -a})
ap + P07 + B20? 5+ n XP | + 0n X o+ asX] 5
-+-Xt2 - a?
= ao+ (o +B)X7 1 + (02 + B) X7 2 + a3 X3

-5 (Xt2—1 - Ut2—1) - /32(Xt2—2 - at2—2)
-+-Xt2 - of

269

= ap+ (o1 +B)XE 1+ (a2 + ) X2 o + as X} 3 — Bive—s

—Bavi—o + vy,

2 2

where v; = X2 — 02 = o2(e2 — 1). Now, we can identify the equation of

an ARMA(3,2) model with noise v;.

4. (a) If we look at the periodogram of the 3-month Treasury Bill data
we notice that the peak is for frequency w = 0. This suggests that

there is probably no periodical effect in the data.

(b) From the time series plot and the ACF plot it is clear that the series
is not stationary. A differencing might be appropriate in this case.
The differenced series looks stationary but the ACF shows several
significant lag correlations (6,7,9,12,14,20,21,27). If we start with
the most complex model ARMA(27,27) we will find that the Port-
manteau test shows some problems signaling a possible over-fitting.
We then consider a simpler model AR(27), whose diagnostics look
much better. If we attempt to further simplify the model by con-
sidering an AR(16) model we run again into problems with the
residuals. When we look at the forecast for the AR(27) model we
see that this model does a better job in the first three months but
is much worse in the second half of the forecasting period and we
could say that, overall, it performs worse that the model in the

example.

(¢) The residual plot of the model selected in part b) shows some
clusters of large residuals and clusters of small residuals. These
can be interpreted as nonconstant variance and would thus fit into
the assumptions of GARCH model. We start our analysis by fitting

a GARCH(1,1) model to the residual series plotted below.

The QQ-norm plot of the residuals from this model is showing

heavy tails.

By looking at the coefficients we see that their sum is very close to

one.
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Residuals from ARIMA model

WWWMWMMWM

T T T T
100 200 300 <00

Time

Residual QQnorm for GARCH(1,1)

. =28

Qu. of

> summary(modell)\$ coef
Value Std.Error t value Pr(>ltl)
A 0.002039197 0.000767944 2.655398 4.109258e-03
ARCH(1) 0.225258985 0.041142302 5.475119 3.741581e-08
GARCH(1) 0.784415288 0.033143639 23.667145 0.000000e+00

However, if we attempt to fit an I[IGARCH things become worse.
Another way to deal with heavy tail residuals is to use a distribution
with heavier tails like the t-distribution. We do this by using the
command:

> model.t2_garch(resid2~-1, garch(1,1),cond.dist="t")

The number of degrees of freedom is automatically chosen by S-
plus. If you want to specify a certain number then you should use
the parameter dist.par in the garch function call.

From the above residual QQ-plot we see that we improved the
model but the quality of the fit is still not very good. One can try
different distributions for the residuals or, attempt a further tuning
of the parameters with the revise command.
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Resldual QQplot for GARCH with t-dist

2ol

T T T T
-a -2 o 2 -
Quantiles of 1(6.36938131887037) distribution

16.10 CHAPTER 10

1.

2.

(a)

(a)
(b)

From the example done in the book, we observe that the univariate
series are non-stationary and require a log differencing operation
which gives reasonable stationarity. The ACF and PACF plots sug-
gest to use AR (or ARIMA if one prefers a more complex model)
models for the three series. For modeling the first variable, Invest-
ment, we opt for an AR(4). For the second variable, Income, we
select an AR(3) model and for the last variable, Consumption, we
choose an AR(3).

By “stacking” the three univariate models we obtain a multivari-
ate model with a higher differencing order than the VAR(2) in the
notes. Also, the coefficient matrices, ®;, will be diagonal for this
model (since we don’t assume any dependencies between the uni-
variate series when we stack them) and not necessarily diagonal for

VAR(2).

The forecasts obtained by using the stacked model are similar to
the ones obtained with VAR(2) for Investment and Consumption.
The most notable fact is the flat forecast for Income, which picks
up the level but doesn’t capture any volatility. Overall, the forecast
seems similar to the one in Section 1.4, although this model doesn’t
account for series interaction.

We have to show that (I—®B)(/+®B) = I. If we open parentheses
we obtain: 12 + ®B — ®B — $2B? = [ because &* = 0.

The following result on p.20 of Graybill (1976) is true in general
(A,B,C and D are matrices with appropriate matching dimen-
sions, D is an invertible matrix):

A B

|M|:‘C’ D

\ =|D||A-BD™C]|.
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Inour case, M = [4—®2z, A= ,—®,z,B= —8,2,C = ~I,z,D =
D~! = I,. By applying the above result, coupled with the fact that
the determinant of a product of square matrices is the product of
the individual determinants, we obtain the desired result.

3. (a) To show that the process is stable we need to look at the roots of
the reverse characteristic polynomial det(I3 — ®;2 — ®222) = 0. We
end up with a quintic equation that can be solved numerically by
using a package like Matlab (or, in SPLUS by using the command
polyroots). The roots are —5.58, 1.45 — 1.194, 1.45 + 1.194, 2.89,
1.09. We see that all the roots are outside the unit circle, so we
conclude that we have stability.

(b) The mean vector is given by yu = E[X}] = (I — ®)~ v, where

= [ & &y [ n _
(8 £)oe(2)ne

The calculation will give u = (6.87,14.37,30.93)".

(c) Denote the process by X; and put X; = (X, X¢—1)’. Then the
VAR(1) model is:

Xt = l/+éXt—1 +Zt

16.11 CHAPTER 11

1. (a) In regression problems, our interest is to estimate the unknown
slope b with the observed data {y:}. Thus this regression model
can be expressed in state space form

Y: =G Xy + Wy, {W¢} ~WN(0,R;)
with

Ytzyt, Gt:Zta thb, Wt=’wt, and Rt:(72.

(b} The least square estimate by, is found by minimizing the sum of
square error » .- (y; — bz)? w.r.t. b. By differentiation, it can be
shown that

b — E?:l Yizy
n Zn 22-

i=1%1
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Thus

6 _ Zn ' z? 21_1 YiZi + Ynn
" Z?_l 23 P

n—1 2
_ iz % (L _Unfn
- En 22 n—1 n—1 g
i=1%i Yicy %

2
zn ynzn

= 5n—l - —bn 1 + =
E?:l zz Zz-—l zi2
~ Zn -
= brort g a(un = 2nbeca)

with Kp = zn/ Y 0 g 22.
(c) In terms of state space form, we have

Gn = Z2n,

o2

n—1 9o’
Zz—l 21
+ o2

Q. = E[(b-bn_1)? = Var(bp_1) =

2252

n—1 9
Zz—l 2
The second row follows from a standard result in linear regression.

From Theorem 11.2, with P;(X¢) = b, and P1(Xy) = br1, We
have

A, = GG+ R =

-1
2 2.2

~ a g 2n0 7

bn = bn—l + n—1 2 ( n—1 2 + 0_2) (yn - Z‘nbn—l)

Zz_l 2 Ez 1 Z3

o 3 (yn )

Z?:l 25

which is the same as the result in (b).

= z\)n—l +

(d) Note that y, is independent of Bn_l. Taking variance on both sides
in the result of b), we have

Var(h,) = (1 — Knzn)?Var(bn_1) + K2Var(y,)

Z?:ll 2 P 2 2
= S+ (1- Kpzp)Var(bp—1) + —————0
Yimr % e (X, 22’

n—1_9 2 n—1 2
= Z;nli( — Kpnzy)Var(bn_1) n s ’Var(
Zz:l zz (Zl_l Z’L)

7 Y 11 z 2
= (1 — Knpzn)Var(b,— = + ==
JVar(bn-1) die1 212 dimt 21'2

= (1- Knz,)Var(b,_1).
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3. (a)

(b)

By Theorem 11.2 with Qy,, = E{(b— bn)?] = Var(by), we have

-1
2 2 2 2 2
- o o Zio o
Var(b,) = —— — — zn< " +02> v -y
22;1 Ziz Z?:l 21'2 Z?:l zz_z E?=1 zi2

2 Var(h

~

= (1 - K,z,)Var(b,—1),

Var(b,-1) —

which is consistent with the regression result.

To show that ¥; is an ARIMA(0,1,1) process, we look at the au-
tocorrelation of the first difference series. Direct calculation shows
that v0) = 203, + o%,7(1) = —o¥, and zero for all higher or-
der autocorrelations. This implies that the first difference series
is MA(1) and thus we can find a process Z; ~ WN(0,0?) and a
parameter 8 such that the required relation be satisfied.

To find 4 and o2 in terms of the known variances we equate the
variance and first autocorrelation of V;_; + W; — W;_; with those
calculated above and we obtain a system of two equations with
two unknowns, which can be reduced to solving a quadratic with
known coefficients.

The numerical calculation leads to 8 = —0.23 or —4.26 and ¢2 =
34.12 or 1.875.

The simulation clearly indicates the ARIMA(0,1,1) structure. How-
ever, we have a hard time distinguishing between the two series.
The two pairs of parameters calculated in part (c) generate very
similar outcomes.

We identify as follows:

0 1 0 0 0 O
F=[ o o 1], 0=(00 o |,
o3 ¢ ¢1 0 0 ¢2

G = (—6,,—61,68), and R=0% =0.
To find 41 and 1 we need to look at the series expansion below:

_ _ 2
1-612—62" (1= 012 — 8322)(1 + 1z + 4227 + ---)
l—qblz
= 14 (¢ —01)z+ (¢7 — 6161 — 02)2° + -+,

where higher order terms have been omitted. Then we obtain that
11 and 1o are the coefficients of the first two terms of the series
given above.
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(c) Same as (b).
(d) We find

0 1
Fz(o d)l)’ G=(150)’

and the required relationship is easy to establish.

(e) In light of (d), direct calculation shows that we must have ¢, =0
and 1y = —6;. Substituting this in the prior calculations will lead
to the desired result.

(f) The second representation involves lower dimensional matrices and
is easy to update.

16.12 CHAPTER 12

1. Readers may refer to Chapter 9 or Exercise 9.4 for the technique of
performing univariate GARCH analysis.

2. We may use the following SPLUS commands to fit various multivariate
GARCH models for the differenced log transformed series.

x_read.table("C://forex.dat", header=T)
x_rts(cbind (x$UK, x$GERMANY, x$CANADA, x$JAPAN),
start=c(1973,29),freq=52) x_diff (log(x))
fitl_mgarch(x“-arma(l,1),~dvec(l,1),trace=F)
#Vector-Diagonal model

fit2_mgarch(x~-1, dvec(1,1),trace=F)
fit3_mgarch(x~-arma(1,1), bekk(1,1),trace=F)
#BEKK model

fit4_mgarch(x~-1, bekk(1,1),trace=F)
fits_mgarch(x~-arma(1,1), ccc.g(1,1) ,trace=F)
#Constant-Correlation model
fit6_mgarch(x™-1,~ccc.g(1,1) ,trace=F)

The goodness of fit of the models can be studied by, for example:

summary(fit1)
pairs(residuals(fitl,standardize=T))
plot(fit1)

3. The fitting for multivariate GARCH process in all cases in b} are reason-
ably good. In particular, a constant mean constant correlation model
(fit6) seems to give the best residuals plots. Since multivariate GARCH
modeling provides more degrees of freedom in describing the dynamics of
the covariance matrix, it serves as a nice alternative for the single-factor
ARCH model given in Diebold and Nerlove (1989).
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16.13 CHAPTER 13

1.

2.

4.

(a) We can write X2 = Y o0, ®;Zs—;2 with &g =1,&; =0 for i > 1.
Since Y 20 ®: =1 # 0, X,z is 1(0).

(b) Since
AXpy =Xy — X110 =2Zn

is I(0) by part a), X is I(1).

(¢) It follows directly from Exericse 2.

Let A, = 35°, i Zs—s be I(0). Write AA; = 350 9:Z;_; with 4o =
o and Qﬁi = 1; — —q for i > 1. It is easy to see that Z;’io 'gZ)i =
oo Wi— D 1o ¥i = 0. Thus overdifferencing gives a stationary process
with Y00, ¥; = 0. As a result, Ag(X; + Y;) will be the sum of an I(0)
process and and over-differenced process Ef_’;o i Z_; with Yoo ¥ = 0.
Thus Ag(X; +Y;) is I(0) and (X¢ + Y3) is I(d).

. Since (0,0,1)Xy = Xi3 = Z;3 is stationary, it is also a cointegrating

vector.

(a) Rearranging terms, we have

(1 - 05B)X¢1 = 0-5Xt_1,2 + Ztl (1610)
and
(1 - 0.75B)X¢2 =0.25X;_11+ Za. (16.11)
Thus
(1 — 0.753)(1 - 0.5B)Xt1
= 0.5(1- 0.758)Xt_1,2 + (1 - 0.75B)Zt1
0.5 x 0.25Xg_2,1 + 0.5Zt_1,2 + Z4y — 0.75Zt_1‘1
and

(1-1.25B+40.25B%)X;; = 0.5Z;_12 + Zy1 — 0.75Z4_11
Xy =(1-125B+0.25B%)71(0.5Z;_12+ Z1y — 0.75Z4-1,1)-

By the similar approach, we also have

(1 -0.5B)(1 - 0.75B)Xt2
0.25(1 — 0.5B)X;s_1., + (1 — 0.5B)Zey
0.25 x 0.5Xt‘2,2 +0.25Z;_11 + Zig — 0.5Z;-1,2
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and

(1-1.25B+40.25B%)X;2 = 0.25Z;_1,1 + Zea — 0.5Z;_1 2
X = (1-1.25B+0.25B%)71(0.25Z;_1.1 + Zia — 0.5Z4-1,2).

(b) By direct calculations, (16.10)-(16.11) give
Xe1 — X2 = 0.25(X_10 — Xi—1,2) + Z1 — Zia,
and (16.10)+2x(16.11) give
X +2Xe = X110+ 2Xi—12+ Zy + 22.
(c) From (b), X;; — X2 is a stationary AR(1) process and X;; +2Xs is
I{1). Thus X;; — X;, is stationary but X;; +2X,» is nonstationary.

Also, the root of 1 —1.25z+0.252% = 0 are z = 1, 4, so the processes
X1 and X are I(1) nonstationary.

(d) Repeat (a) to (c) with 1/4 replaced by —1/4. It can be shown that
X1 — Xyo is stationary, X;1 and X;» are still I(1) nonstationary.

16.14 CHAPTER 14

1. (a)

n
1 _x-w?
L(O_Z) - H\/ﬁ e 202

(b) Conditional distribution
o« L(o*)p(o?)

o« (62) % exp {—-% Z(Xi _ N)z} (62)—a+1e-f2

The posterior is IG(o+ %,8 + 3 3 11 (Xi — p)?).
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2. (a) Normal with known variance:

L e—%‘éﬁ_ 1 e~ (@15

210 V2ro

(b) Normal with known mean:

1 T— 4 2 e_—ﬁ'—‘a'—! 2_1
e 22 =_— ¢ % LIt
V2mo Vo

(c) Poisson:

(d) Binomial:

Crpx(l _p)(n—z) - nC'reI log p+(n—z) Iog(l—p)_

3. Suppose that
L(#) = gr(z)hr(8) exp [ztm Yr,:(0 )]
p(a) = gp eXp [Z tp, Tpp i 9)]
Then,
7(0) o gu(@)hi()exp [3 to@)via(8)] gp(u)hp(6)exp |3 toi(u)is(6)]
o (01(&)ap (1) (1 (O)hy(0)) exp [ 3 tr.s(@Vbr(6) + b a(6)]
6. (a) Let p{u) Ae_(u;‘fl - + Be_(“;:l . and L{p) Ce“SIT_a%ﬁ.
r(y) o Ce T ( U g )

z—1)2 _(u—ug)2 )2 u—p?
ACe 2% ¢ 2% + BCe™ 2wt e 2%

Hence, this is a mixture of two normals.
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(=—n)?

(b) Let p(p) x Zle Aie  *t and L(p) x Ce™ ol

(= uE)
m(p) «x Ce” = ZA@ 207

=1

2 (n—ny)?

K
= ZAiCe_(Iz_a“2 e 29

i=1

K 2
- S ACepl (L L T
= ZA,-Cexp{ 7 (02+03>+u(0 +‘7i2)}

|

i=1
K T i\ 2
1/1 1 = t+4
= AlCexp{ —= (——+—) -~ i
grcer el a3

Hence, this is a mixture of normals.

7. Evaluating o;,; = min { , %(T)I’M(JJIT)Z} we have

ay;| 1 2 3 4

1 |{-- --— 0 1
2 |-- -- 1 1
3 |-- 1/3 —- 1/2
4 |2/3 2/3 1 --

As P(i,7) = p(i, j)as,; for all i # j, we have

-—— 0 0 1/3
0 — 1/3 1/3
P= 0 1/6 —— 1/4
1/6 1/6 1/4 ——

2/3 0 0 1/3
0 1/3 1/3 1/3
0 1/6 7/12 1/4

1/6 1/6 1/4 5/12

The transition matrix can be verified by checking the equation 7P = .
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16.15 CHAPTER 15

1. (a)

ZZi = Z(Xi -X)/$

i=1 i=1

- (;x —nX) /s

= (nX —nX)/S=0.

izﬁ = f:(x,-—)'c)z/s2
) = (;—1)52/82=n—1.

ey

& = Y (Zi-W)

n n
= Z?+ZW12_2ZZiWi
=1 i=1 i=1

= n-1)+n-1)—-2(n-1Dr
= 2(n-1)Q-r).

3. Take Bank of China (3988.HK) and Sino Land (0083.HK) for Pairs
Trading. Pairs Formation Period = 1/1/2007 to 2/7/2007. Paris Trad-
ing Period = 3/7/2007 to 1/1/2008. Number of Open = 3, Number of
Close = 2. Net Profit = $§—0.0938.
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4. Take Bank of China (3988.HK) and Sino Land (0083.HK) for Cointe-
gration Pairs Trading. Pairs Formation Period = 1/1/2007 to 2/7/2007.
Paris Trading Period = 3/7/2007 to 1/1/2008. Weight on Bank of China
= 1, Weight on Sino Land = 0.1163. Number of Open = 4, Number of
Close = 3. Net Invest = $0, Net Profit = $0.3402.
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